MANUAL DE INSTRUÇÕES INVERSOR DE FREQUÊNCIA LINHA - SN160MN

Leia atentamente todas as informações contidas neste manual a fim de ter um melhor aproveitamento do equipamento e evitar acidentes.

Índice

1.	Preca	uções de segurança	1
	1.1.	Definição das informações de segurança	1
	1.2.	Sinais de advertência	1
	1.3.	Guia de segurança	2
2.	Intro	duçãodução	4
	2.1.	Informações rápidas	4
	2.2.	Especificações técnicas	6
	2.3.	Parâmetros nominais	8
	2.4.	Descrição dos componentes e dimensões	8
3.	Instru	ıções para Instalação	10
	3.1.	Instalação do Inversor	10
	3.2.	Ligações Básicas	13
4.	Opera	ação do teclado	18
	4.1.	Descrição	18
	4.2.	Visor do painel	20
	4.3.	Teclado de operação	21
5.	Lista	de parâmetros de funções	23
	5.1.	Grupo F0 - Funções Básicas	24
	5.2.	Grupo F1 - Parâmetros de controle Partida/Parada	28
	5.3.	Grupo F2 - Parâmetros de Controle	30
	5.4.	Grupo F3 – Primeiros Parâmetros de Controle Vetorial do Motor	33
	5.5.	Grupo F4 - Parâmetros de Controle Vetorial	34
	5.6.	Grupo F5 - Parâmetros do Controle de Torque	
	5.7.	Grupo F6 - Parâmetros do terminal de entrada	37
	5.8.	Grupo F7 - Parâmetros do Terminal de Saída	41
	5.9.	Grupo F8 - Falha e Proteção	43
	5.10.	Grupo F9 - Parâmetros Auxiliares de Função	50
	5.11.	Grupo FA - Parâmetros do Teclado e do Display	53
	5.12.	Grupo FB - Parâmetros de Otimização de Controle	56
	5.13.	Grupo FC - Parâmetros da Função PID	57
	5.14.	Grupo FD - Frequência de oscilação, comprimento fixo e parâmetros de contagem	59
	5.15.	Grupo FE - Instrução multi-segmentos, parâmetros do CLP simples	60
	5.16.	Grupo FF - Parâmetros de Gerenciamento	64
	5.17.	Grupo P0 - Parâmetros da Comunicação Serial	65
	5.18.	Grupo P2 - Parâmetros de calibração da entradas e saídas analógicas	
	5.19.		
	5.20.	Grupo P4 - Parâmetros de código de função definidos pelo usuário	69
	5.21.	Grupo U0 - Parâmetros de Monitoração	
6. I	Detaile	d function description (Descrição detalhada das funções) - Inglês	
	6.1.	F0 (Basic function)	
	6.2.	F1 set (Start/Stop control parameters)	
	6.3.	F2 set V/F control parameters	
	6.4.	F3 set (First motor vector control parameters)	
	6.5.	F4 set (Vector control parameters)	

6.6. F5 set (Torque control parameters)	102
6.7. F6 set (Input terminal parameters)	103
6.8. F7set (Output terminal parameters)	114
6.9. F8 set (Fault and protection, accelerated overcurrent)	119
6.10. F9 set(Auxiliary function parameters)	127
6.11. FA set (Keyboard and display parameters)	137
6.12. FB set (Control optimization parameters)	141
6.13. FC set (PID function parameters)	142
6.14. FD set (Swing frequency, fixed length and counting parameters)	145
6.15. FE set (Multi-segment instruction, simple PLC parameters)	147
6.16. FF set (Function code management parameters)	151
6.17. P0 set (Communication parameters)	152
6.18. P2 set (AIAO calibration parameters)	153
6.19. P3 set (AI curve setting parameters)	154
6.20. P4 set (User-defined function code parameters)	156
6.21. U0 set (Monitoring parameters)	158
7. Resolução de problemas	161
7.1. Prevenção	161
7.2. Solução de problemas	164
Apêndice A. Protocolo de comunicação	171
A.1. Utilização do MODBUS neste inversor	171
A.2. Códigos de comando e de dados	173
A.3. Definição dos dados dos endereços	176
A.4. Exemplo de operações de escrita e leitura	180
Apêndice B: Opções de periféricos	182
B.1. Fiação de periféricos	182
B.2. Fonte de alimentação	183
B.3. Cabeamento	184
B.4. Disjuntor e contator	185
B.5. Reator	185
B.6. Resistor de frenagem	186
B.6.1. Seleção do resistor de frenagem	186
B.6.2. Instalação do resistor de frenagem	188
B.7. Dimensões (mm)	189
B.7.1. Teclado externo	189

1. Precauções de segurança

Leia atentamente este manual antes do transporte, instalação, operação e manutenção deste produto e siga todas as precauções de segurança contidas neste manual em qualquer uma das práticas; se não o fizer, poderá apresentar o risco de lesões pessoais (incluindo o potencial de morte) ou danos ao equipamento. Não seremos responsáveis por quaisquer ferimentos e danos ao equipamento causados por sua negligência ou falha em seguir nossas instruções.

1.1. Definição das informações de segurança

Perigo: O não cumprimento dos requisitos relevantes pode causar ferimentos graves e até a morte.

Cuidado: O não cumprimento dos requisitos relevantes pode resultar em ferimentos pessoais ou danos ao equipamento.

Aviso: É necessário tomar medidas para garantir a operação correta.

Profissionais treinados e qualificados: O pessoal aprovado requer treinamento profissional em elétrica e educação de segurança para se familiarizar com a instalação, operação e manutenção deste equipamento e o conhecimento para evitar todo tipo de emergências.

1.2. Sinais de advertência

Os sinais de advertência servem para alertar sobre as situações que podem causar lesões pessoais graves ou danos ao equipamento com sugestões para evitar tal risco.

Os seguintes sinais de aviso são os utilizados neste manual:

Símbolo	Nome	Descrição
A	Perigo	O não cumprimento dos requisitos causará lesões pessoais graves e até mesmo a morte.
\triangle	Cuidado	O não cumprimento dos requisitos pode levar a lesões pessoais ou danos ao equipamento.
	Sensibilidade à estática	O não cumprimento dos requisitos pode danificar a placa eletrônica
	Alta temperatura	A base do inversor produz alta temperatura. Não toque nesta área
NOTA	Advertência	Os passos devem ser seguidos para obter os resultados corretos

1.3. Guia de segurança

Somente pessoal treinado e qualificado está autorizado a realizar as operações relacionadas. Não execute a fiação, inspeção e substituição de componentes enquanto a energia estiver ligada. Antes da fiação e verificação, primeiro deve garantir que toda a alimentação de entrada foi desconectada e, em seguida, aguarde pelo menos 10 minutos ou verifique se a tensão do barramento CC é inferior a 36V.

A modificação não autorizada do inversor é estritamente proibida; caso contrário, pode causar incêndio, choque elétrico ou ferimentos.

Quando o inversor está em funcionamento, a base do inversor pode gerar alta temperatura. Não toque nessa área para evitar queimaduras.

Os componentes eletrônicos do inversor são sensíveis à eletrostática. Medidas antiestáticas devem ser tomadas durante a operação.

1.3.1. Manuseio e instalação

Não instale o inversor próximo a materiais inflamáveis. Conecte as opções de freio de acordo com o diagrama de fiação. Não opere o inversor se houver algum dano ou peça faltando. Para reduzir o risco de choque elétrico, não toque no inversor diretamente ou com objetos molhados.

NOTAS:

- As ferramentas para transporte e instalação devem atender a todos os requisitos para garantir a operação normal e segura do inversor e evitar lesões pessoais. O instalador deve ter proteção mecânica adequada, como sapatos antiesmagamento e roupas de trabalho para garantir a segurança pessoal.
- N\u00e3o segure o inversor pela tampa frontal durante o transporte pois ela pode se separar acidentalmente.
- Levante e manuseie o produto com cuidado durante o transporte e a instalação, caso contrário, ele poderá ser danificado.
- O inversor deve ser instalado em um local longe de crianças e do público.
- Se o local de instalação estiver localizado em um local cuja altura acima do nível do mar seja superior a 2000 metros, o inversor não atenderá aos requisitos IEC61800-5-1 para proteção adequada de baixa tensão.
- Instale este produto em um ambiente adequado (consulte o capítulo "Ambiente de instalação" para obter detalhes).
- Evite que parafusos, cabos ou outros objetos condutores caiam dentro do inversor.
- Quando o inversor está funcionando, a corrente de fuga pode exceder 3,5mA. Certifique-se de aplicar medidas de aterramento confiáveis, onde a resistência de aterramento deve ser menor que 10Ω e a condutividade (ou a área da seção transversal do cabo) do condutor de aterramento PE e a dos condutores de fase sejam as mesmas.
- Os terminais R, S, T e N são para a entrada de energia, enquanto os terminais U, V e W são para a saída.
 Conecte os cabos de alimentação de entrada e os cabos de saída corretamente; caso contrário, o inversor

será danificado.

1.3.2. Operação

Antes de ligar os terminais do inversor, deve-se desligá-lo da energia elétrica e aguardar pelo menos 10 minutos.

O inversor opera em tensão da rede (220V ou 380V). Qualquer operação ou configuração que não dependa completamente da operação do teclado é proibida. Este produto não se destina e não pode ser usado como uma "medida de parada de emergência". Para fins de frenagem do motor de emergência, um dispositivo de freio mecânico extra deve ser aplicado.

NOTAS:

- Não LIGUE/DESLIGUE a alimentação deste produto em um intervalo de tempo curto.
- Antes de reutilizar este produto após um longo período de armazenamento, faça uma inspeção completa.
- Antes de iniciar o inversor, deve-se recolocar a tampa frontal para reduzir o risco de choque elétrico.

1.3.3. Inspeção, manutenção e substituição de componentes

A manutenção, inspeção ou substituição de componentes do inversor deve ser realizada por profissionais treinados e qualificados. Antes de qualquer manutenção, inspeção ou substituição de componentes, todas as fontes de alimentação conectadas ao inversor devem ser cortadas e, em seguida, aguardar pelo menos 10 minutos. Durante qualquer manutenção e/ou substituição de componentes, devem ser tomadas as medidas adequadas para evitar que objetos condutores, como parafusos e cabos, caiam no inversor, juntamente com medidas antiestáticas para proteger o inversor e seus componentes internos.

NOTAS:

- Aperte os parafusos com o torque adequado.
- Durante a manutenção, inspeção e substituição de componentes, evite o contato com o inversor e seus componentes e faça em local onde não haja materiais inflamáveis próximos.
- Não execute o teste de tensão do isolamento neste produto, nem use um megômetro para testar o circuito de controle do inversor.

1.3.4. Descarte

Os componentes do inversor contêm metais pesados. O inversor a ser descartado deve ser tratado e manuseado como resíduo industrial.

NOTAS:

- Os componentes do inversor podem explodir quando queimados.
- Peças plásticas como painéis geram gases tóxicos quando queimadas.
- Não descarte o inversor sem os devidos cuidados. Seu descarte requer tratamento especial.

2. Introdução

2.1. Informações rápidas

2.1.1. Recebimento e inspeção

Assim que o produto for recebido, observe os seguintes itens:

- A embalagem deve parecer intacta, sem nenhum sinal de umidade.
- A identificação do modelo impressa na embalagem deve ser consistente com o seu pedido de compra.
- Desembale e verifique se há alguma anormalidade, como manchas de água dentro da caixa de embalagem ou algum sinal de dano ou rachadura na carcaça do inversor. Se alguma anormalidade ou dano for encontrado, entre em contato com a fábrica.
- A placa de identificação do produto é consistente com a identificação do modelo impressa na caixa? Caso contrário, entre em contato conosco.
- Verifique se estão todos os acessórios que devem acompanhar a embalagem, como o manual e o teclado.

2.1.2. Informações para utilização

Antes de utilizar/manusear ou instalar o inversor, verifique as seguintes informações:

- O tipo de carga a ser acionada que o inversor irá acionar? E o inversor será sobrecarregado na operação real?
- O valor nominal da corrente do motor deve ser menor ou igual que o valor da corrente nominal do inversor.
- A tensão da rede deve ser consistente com a tensão nominal de entrada do inversor.

2.1.3. Informações ambientais

Antes da instalação e uso do inversor, confirme o seguinte:

- A temperatura ambiente do inversor excede 40°C? Em caso afirmativo, reduza a capacidade a uma taxa de 1% para cada aumento de 1°C. Além disso, não use o inversor em um ambiente acima de 50°C.
 - AVISO: Para o inversor instalado em painel fechado, a temperatura ambiente acima mencionada deve ser a temperatura do ar dentro do gabinete.
- A temperatura ambiente do inversor é inferior a -10°C? Em caso afirmativo, adicione dispositivos de aquecimento.

 AVISO: Para o inversor instalado em painel fechado, a temperatura ambiente acima mencionada deve ser a temperatura do ar dentro do gabinete.
- Caso o local de instalação do inversor esteja localizado em local cuja altitude seja superior a 1000m e não ultrapasse 3000m, a capacidade de potência se reduz na razão de 1% a cada 100m de aumento de altitude. Se a altitude ultrapassar 2000m, conecte um transformador de isolação no lado de entrada do inversor. Se for superior a 3000m, o inversor não é recomendado.
- A umidade ambiente do local de instalação do inversor excede 90%? Há algum sinal de condensação? Nesse

caso, você precisa tomar algumas medidas extras para proteger o inversor da umidade.

- Existe algum sinal de luz solar direta? Se assim for, você precisa tomar medidas extras para proteger o inversor de tal.
- Há poeira, gás explosivo e inflamável no local do inversor? Se assim for, você precisa tomar medidas extras para proteger o inversor de tal.

2.1.4. Informações de instalação

Após a instalação do inversor, verifique a instalação para confirmar os seguintes pontos:

- A capacidade de corrente do cabo de alimentação de entrada e do cabo de saída até o motor atendem ao requisito de carga real?
- Os acessórios para o inversor (incluindo reator de entrada, filtro de entrada, reator de saída, filtro de saída e resistor de frenagem) estão selecionados e instalados corretamente? Os cabos usados para conectar esses acessórios atendem aos requisitos de capacidade atuais?
- O inversor está instalado em materiais não propagadores de chama? Os acessórios geradores de calor (reatores, resistores de frenagem, etc.) do inversor estão afastados de materiais inflamáveis?
- Todos os cabos de controle são alocados de forma que fiquem separados dos cabos de alimentação? A fiação considera totalmente os requisitos de característica EMI?
- Todas as medidas de aterramento estão devidamente feitas de acordo com os requisitos do inversor?
- O inversor está instalado de forma que haja espaço suficiente ao redor dele conforme as instruções do manual?
- O inversor está instalado da forma indicada no manual?
- Os terminais de fiação externa do inversor estão firmemente fixados com o torque necessário?
- Há algum parafuso, cabo ou outros objetos condutores deixados no inversor? Se sim, por favor, remova-o.

2.1.5. Informações básicas de operação

Antes de colocar o inversor em operação, siga os passos abaixo para efetuar a configuração básica:

- O recurso de autoajuste é necessário aqui? Se houver tal necessidade, desconecte a carga do motor para ativar a autoajuste dos parâmetros dinâmicos; se não for possível desconectar a carga, escolha o recurso de ajuste manual/estática.
- Ajuste os intervalos de aceleração e desaceleração de acordo com as condições da carga.
- Confirme se o sentido de rotação do motor é consistente com o requisito de acionamento do motor. Se for oposta, recomenda-se mudar a direção trocando quaisquer dois dos cabos trifásicos de saída para o motor.
- Defina todos os parâmetros de controle e coloque o sistema em operação para verificar sua operação.

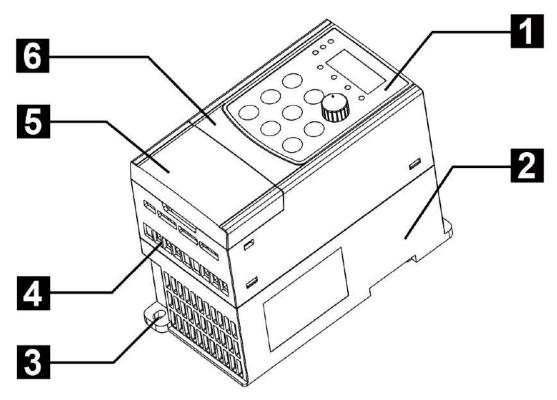
2.2. Especificações técnicas

Descrição das funções	Especificações				
Modelo	0.75kW-2.2kW	3.7kW-15kW			
ENTRADA					
Alimentação	AC, 1 Fase, 220V ~ 240V	AC, 3 Fases, 380V~480V			
Frequência nominal	50/6	60 Hz			
Faixa de frequência	±5% (47.5 ~ 63Hz)				
SAÍDA					
Tensão de saída	Variável: de 0 até Tensão de entrada				
Frequência de saída	0.1 ~	0.1 ~ 500HZ			
Potência de saída	Verifique a tabela de	parâmetros nominais			
Corrente de saída	Verifique a tabela de	parâmetros nominais			
PARÂMETROS BÁSICOS	5				
Fraguên dia mévima	Controle Vetor	rial: 0~500Hz			
Frequência máxima	Controle Escalar	· V/F: 0∼500Hz			
Fraguência de energeão	0.8KHz∼8KHz (Sı	uporta até 16KHz)			
Frequência de operação	Ajustada automaticamente de acor	rdo com as características da carga			
Resolução da frequência	Entrada dig	ital: 0.01Hz			
de entrada	Entrada analógica: Mai	ior frequência×0.025%			
Modo de controle	Controle Vetorial (SVC) Controle Escalar V/F				
Torque de partida		:scaiar v/F 0% (SVC)			
Relação de ajuste da	·) (SVC)			
velocidade Precisão de ajuste da	±0.5% (SVC)				
velocidade	<u>`</u>				
Sobrecarga máxima	150% da corrente nominal: 60 segundos				
Sobrecarga maxima	170% da corrente nominal: 12 segundos 190% da corrente nominal: 1.5 segundos				
Reforço de torque	Reforço automático de torque; Faixa de ajuste manual do torque 0.1%~30.0%				
Curva V/F		quadrática (1.2 potência, 1.4 potência, 1.6 ncia e 2.0 potência)			
Separação V/F	Separação total, Separ	ração parcial (metade)			
Tempo de aceleração e de desaceleração		npo de aceleração e de desaceleração			
ue desdecieração		m DC: 0.00Hz ~ Fmáx			
Freio DC	Tempo de frenagem: 0.0s~36.0s				
	Corrente de frenagem: 0.0%~100.0%				
Controlo 100	Faixa de frequência de JOG: 0).00Hz ~ Fmáx (Padrão=5Hz).			
Controle JOG	Tempo de aceleração e de desaceleração JOG: 0.0s~6500.0s.				
Controle PID	Método simples de estabelecer um si	istema de controle de malha fechada			
Regulação automática de voltagem (AVR)	Mantem a tensão de saída estável quando a tensão da rede flutuar.				
Prevenção de estol contra sobretensão e		aticamente durante a operação para evitar sobrecorrente e sobretensão.			

6

CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

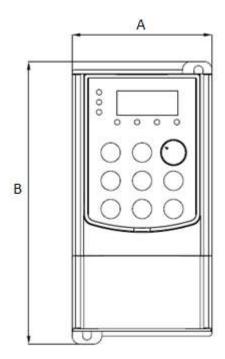
sobrecorrente	
Limitador rápido de corrente	Reduz o risco de falhas de sobrecorrente para manter o VFD operando normalmente.
Controle de torque	Limita o torque automaticamente durante a operação para evitar disparos frequentes devido a sobrecorrente.
Unidade de frenagem	Unidade de frenagem integrada para modelos de 5,5 kW e abaixo
CARACTERÍSTICAS ESI	PECIAIS
Desaceleração até a parada	Em caso de perda de potência, a energia de realimentação de carga é usada para compensar e desacelerar o motor até a parada, para evitar danos mecânicos.
Limitador rápido de corrente	Reduz o risco de falhas de sobrecorrente para manter o VFD operando normalmente.
Controle de tempo	Faixa de valores: 0.0Min ~ 6500.0Min
Comunicação	Modbus RTU
ENTRADA E SAÍDA	
Possibilidade de comandos	IHM frontal, terminais de controle e comunicação serial
Config. da frequência	Configuração digital, setagem por voltagem analógica, setagem por corrente analógica, setagem por pulsos e setagem pela porta serial.
Config. da frequência auxiliar	5 opções para fornecer ajuste fino de frequência auxiliar flexível e síntese de frequência.
Entradas	4 entradas digitais (uma suporta entrada de pulso de alta frequência até 50kHz)
Saídas	1 saída analógica suportando entrada de tensão de 0 \sim 10V ou entrada de corrente de 0 \sim 20mA
BOTÕES DO VISOR	
Visor de LED	Mostra os parâmetros no visor
Chave de bloqueio e de seleção de funções	Permite que os usuários bloqueiem parcial ou totalmente as teclas ou definam a faixa operação para teclas a fim de evitar operação incorreta
Função de proteção	Detecção de curto-circuito do motor ao ligar, proteção contra perda de fase de saída, proteção contra sobrecorrente, proteção contra sobretensão, proteção contra subtensão, proteção contra superaquecimento e proteção contra sobrecarga.
CONDIÇÕES AMBIENTA	AIS
Temperatura de armazenagem	-20°C ~ 60°C
Temperatura de operação	-10°C ~ 50°C (Se a temperatura estiver acima de 40°C, a corrente de saída deve ser reduzida em 1% para cada 1°C de incremento)
UR% para armazenagem	<90%RH
UR% para operação	<90%RH
Nível de ruído	50dBA máx.
NORMAS	2.5.5
	Padrões:
EMC	IEC 61800-3, C3
	Padrões:
Segurança	IEC 61800-5-1
INTERACE	
Porta de comunicação	RS-485

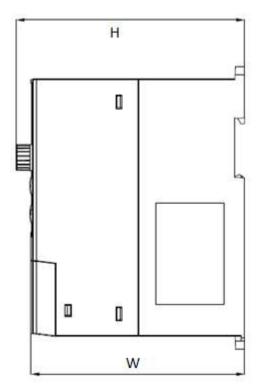


2.3. Parâmetros nominais

MODELO	Pot. Nominal (KVA)	Corrente de entrada (A)	Corrente de saída (A)	Motor para aplicação (kW)	Motor para aplicação (HP)
	Tensã	o de Entrada: Mor	nofásico 220V 50	/60Hz	
0R7GB-S2	1.5	8.2	4	0.75	1
1R5GB-S2	3	14	7	1.5	2
2R2GB-S2 4		23	9.6	2.2	3
	Tens	ão de Entrada: Tr	ifásico 380V 50/	60Hz	
3R7Gb-T4	6	10.5	9	3.7	5
5R5GB-T4	11	13.9	13	5.5	7.5
7.5G-T4	15	18.9	17	7.5	10
11G-T4	30	27.8	25	11	15
15G-T4	37	37.9	32	15	20

2.4. Descrição dos componentes e dimensões




- 1. IHM Frontal
- 2. Gabinete
- 3. Local para fixação por parafuso

- . Terminais de Entrada e Saída (potência)
- 5. Acesso aos terminais de controle
- 6. Tampa frontal

Madalaa	Dimensões (mm)				Dece (Va)
Modelos	Α	В	W	Н	Peso (Kg)
0R7GB-S2	78	165	107	118	0,686
1R5GB-S2	78	165	107	118	0,715
2R2GB-S2	85	170	129	140	1,002
3R7Gb-T4	97	195	143	153	1,331
5R5GB-T4	97	195	143	153	1,370
7.5G-T4	124	246	172	180	2.099
11G-T4	124	246	172	180	2.243
15G-T4	165	340	186	195	4.165

3. Instruções para Instalação

Somente profissionais treinados e qualificados estão autorizados a realizar as tarefas descritas neste capítulo. Siga as instruções indicadas em "Precauções de segurança" para tais tarefas. Ignorar qualquer uma das precauções de segurança pode causar ferimentos pessoais ou morte ou danos ao equipamento.

Durante o processo de instalação, todas as fontes de alimentação conectadas ao inversor já devem estar desconectadas. Caso contrário, desconecte as fontes de alimentação e aguarde pelo menos 10 minutos antes de retomar a instalação.

O plano de instalação e o design do inversor devem estar em conformidade com as leis e regulamentos locais relevantes. Não assumiremos qualquer responsabilidade por qualquer violação em relação à instalação deste. Além disso, a garantia ou garantia de qualidade fornecida com o inversor não cobrirá qualquer incidente ou mau funcionamento devido ao desconhecimento do usuário das instruções aqui contidas.

3.1. Instalação do Inversor

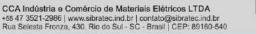
3.1.1. Ambiente da instalação

A fim de se obter um alto desempenho a longo prazo e operação normal do inversor, uma seleção adequada do local de instalação torna-se crítica.

Ambiente	Requisitos
Local da	Dentro de casa e livre de luz solar direta, poeira, gás corrosivo, gás inflamável, névoa de óleo,
instalação	vapor de água, gotejamento de água ou sal, etc.
Altitude	Menos do que 1000m
Temperatura	-10 °C \sim $+40$ °C (Para 40°C \sim 50°C, use com redução de potência).
ambiente	Para maior confiabilidade, use o inversor em um local onde a temperatura não mude rapidamente. Ao instalá-lo em um espaço fechado, como um painel, use um ventilador ou condicionador de ar para resfriamento a fim de evitar que a temperatura interna exceda o limite. Se o inversor for reiniciado após um longo período em uma condição de baixa temperatura, uma medida extra de aquecimento externo será necessária para eliminar eventual gelo dentro dele a fim de evitar risco de danos ao inversor
Umidade	Menor do que 95%RH sem condensação
Vibração	Menos do que 5.9m/s2 (0.6g)
Temperatura de armazenagem	−20°C~+60°C
Grau de proteção	IP20
Tipo de rede elétrica	TN, TT

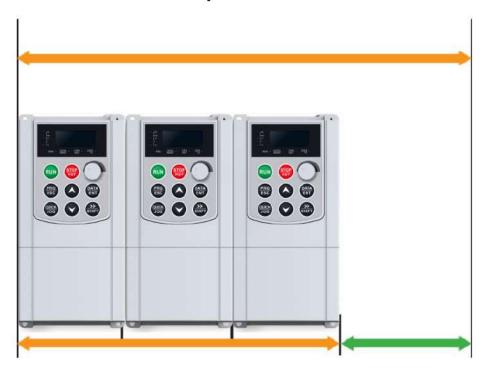
3.1.2. Orientação de instalação

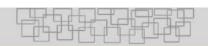
O inversor deve ser instalado na orientação vertical conforme mostrado abaixo:


3.1.3. Forma de instalação

O inversor permite fixação por parafusos ou fixado em trilho DIN, segue as ilustrações:

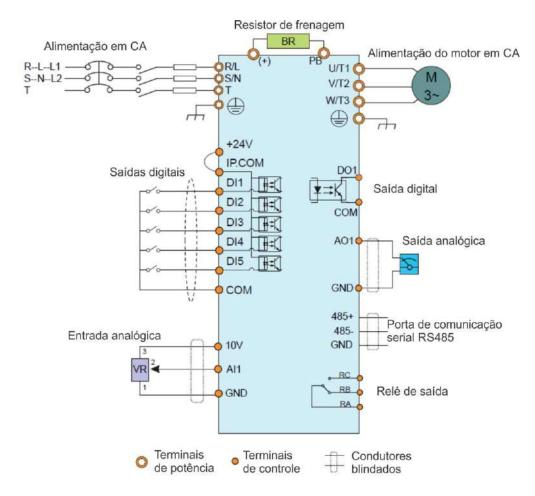
(1) Fixação por parafusos

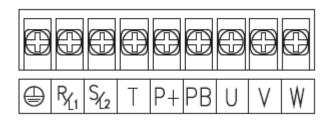


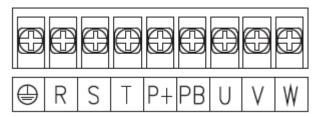


(2) Fixação em trilho DIN

(3) Permite instalação lado a lado encostados




3.2. Ligações Básicas


O diagrama de ligações abaixo mostra o circuito principal e o circuito de controle do inversor:

Nota: Fusíveis, resistores de frenagem, resistências de entrada, filtros de entrada, resistências de saída e filtros de saída são todos acessórios opcionais. Para obter detalhes, consulte a seção "Opções de periféricos".

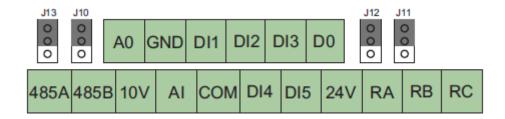
3.2.1. Diagrama de terminais do circuito principal

Terminais para os modelos 0.75kW-2.2kW

Terminais para os modelos 3.7kW-15kW

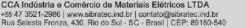
Função dos terminais:

Símbolo	Nome	Função
R、S、T	Entrada trifásico em CA	Conexão da rede trifásica de entrada em CA
L1、L2	Entrada monofásica em CA	Conexão da rede monofásica de entrada em CA
(PB)、(+)	Terminais para o resistor de frenagem	Conectar o resistor de frenagem
(Terminal de aterramento	Conecte à massa
U、V、W	Saída trifásica em CA	Terminais para conexão do motor elétrico


AVISO:

- É proibida a utilização de cabos de motor assimétricos. Se o cabo do motor vier com um condutor de aterramento simétrico junto com a camada de blindagem condutora, aterre o condutor na extremidade do inversor e na extremidade do motor.
- Passe os cabos do motor, cabos de alimentação de entrada e cabos de controle separadamente.

3.2.2. Passos para fazer a fiação


- Conecte o fio terra do cabo de alimentação de entrada diretamente ao terminal terra (PE) do inversor e conecte o cabo de entrada monofásico ou trifásico aos terminais L1, L2 ou R, S, T.
- 2. Conecte o fio terra do cabo do motor ao terminal de aterramento (PE) do inversor e conecte o cabo trifásico do motor aos terminais U, V e W.
- 3. Conecte o resistor de freio opcional com cabo na posição designada.
- Se as condições permitirem, fixe mecanicamente todos os cabos fora do inversor.

3.2.3. Diagrama dos terminais de controle

Categoria	Marcação do terminal	Nome	Descrição
Comunicação	RS485A	Porta RS485	Sinal diferencial positivo para RS485
Comunicação	RS485B	Forta K5705	Sinal diferencial negativo para RS485
Entrada analógica	AI1	Entrada analógica 1	Voltagem ou corrente analógica de entrada. Pode ser utilizada como entrada digital, veja o

SIBRA	TEC		ELETRÓNICA		
			parâmetro F6-31		
Saída analógica	AO1	Entrada analógica 12	Saída de voltagem ou corrente analógica		
	DI1	Entrada digital 1	Entrada digital normal		
	DI2	Entrada digital 2	Entrada digital normal		
Entrada digital	DI3	Entrada digital 3	Entrada digital normal		
	DI4	Entrada digital 4	Entrada digital normal		
	DI5	Entrada digital 5	Entrada digital normal		
Saída digital	DO	Saída digital 1	Saída digital normal/Saída pulsada de alta frequência		
	10V	+10V	Alimentação de +10V		
Alimontação	GND	Terra para +10V	Referência de aterramento para +10V		
Alimentação	24V	+24V	Alimentação de +24V e referência de		
	COM	Terra para +24V	aterramento para +24V		
D 1' 1 '1	RA/RB	D.1′.1′1	Saída NF		
Relé de saída	RA/RC	Relé de saída	Saída NA		

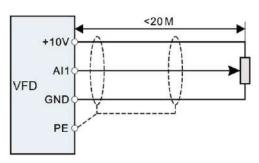
Funções dos jumpers

Númer 0	Nome	Pinagem	Função	Setagem
J13	AI1	1 2 3 0	12: Entrada de tensão (0 \sim 10V) 23: Entrada de corrente (0 \sim 20mA)	0~10V
J10	AO1	1 2 3 0	12: Saída de tensão (0 \sim 10V) 23: Saída de corrente (0 \sim 20mA)	0~10V
J12	PW	1 2 3 0	12: Método de fiação da fonte 2—3: É um método de instalação do tipo `SINK'	Tipo de fonte
J11	CME	1 2 3	Isolação optoacoplada, saída em coletor aberto; Faixa de voltagem de saída: 0V~24V; Faixa de corrente de saída: 0mA~50mA; Nota: O aterramento da saída digital CME está internamento isolado do aterramento da entrada digital COM. Por padrão, está conectado internamento através do jump J11. Quando a DO é suprida por uma fonte externa, J11 deve ser desconectado	Short circuit COM

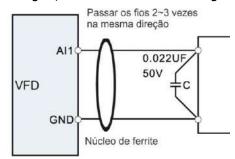
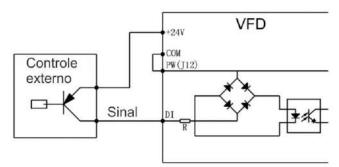
Notas:

[Nota 1] Quando a temperatura ambiente excede 25°C, a corrente de saída do terminal precisa ser reduzida para uso. [Nota 2] A posição do jumper na placa de controle e a atribuição da função do terminal, consulte o produto ao usá-lo.

Entrada analógica:


Como o sinal de tensão analógica é particularmente suscetível a interferências externas, geralmente é necessário usar um cabo blindado, e a distância da fiação deve ser a mais curta possível, não superior a 20m, conforme mostrado na Figura 3.2.3-3. Em algumas situações em que o sinal analógico sofre interferência severa, um capacitor de filtro ou

núcleo de ferrite deve ser adicionado ao lado da fonte do sinal analógico, conforme mostrado na Figura 3.2.3-4.

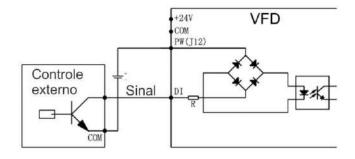

Figure 3.2.3-3

Figure 3.2.3-4

Entrada digital:

Geralmente, cabos blindados são necessários e a distância da fiação deve ser a mais curta possível, não superior a 20m. Ao usar o modo de condução ativo, as medidas de filtragem necessárias devem ser tomadas para a diafonia da fonte de alimentação. Recomenda-se usar o método de controle de contato.

Método de conexão do tipo de fonte NPN usando fonte de alimentação interna de 24 V

Método de conexão do tipo coletor PNP usando fonte de alimentação interna de 24 V

Método de conexão do tipo fonte NPN usando fonte de alimentação externa (Observe que J12 remove o jumper entre PW e +24V)

Método de conexão do tipo coletor PNP usando fonte de alimentação externa (observe que J12 remove o jumper entre PW e +24V)

Saída digital:

Quando o terminal de saída digital precisar acionar o relé, os diodos de roda livre devem ser instalados em ambos os lados da bobina do relé, caso contrário, é fácil causar danos à fonte de alimentação DC +24V e a capacidade do drive não é superior a 50mA.

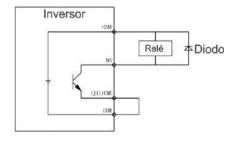


Diagrama de fiação da saída digital

CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

3.3. Proteção da fiação

3.3.1. Proteção contra curto-circuito e cabo de alimentação

É necessário aplicar dispositivo de proteção (como fusível) para evitar que o inversor e o cabo de alimentação de entrada superaqueçam devido a eventos de curto-circuito. Tal dispositivo de proteção deve ser implantado de acordo com as seguintes diretrizes.

AVISO: Siga as instruções aqui contidas para selecionar os fusíveis, que não apenas protegerão o cabo de alimentação de entrada, bem como o inversor contra uma falha externa de curto-circuito, mas também fornecerão proteção adequada aos equipamentos no mesmo circuito quando um curto-circuito interno ocorre dentro do inversor.

3.3.2. Proteção para o motor e cabos do motor

Desde que os cabos do motor sejam selecionados de acordo com a corrente nominal do inversor, o inversor oferece proteção contra curto-circuito para o cabo do motor e para o motor. Apresentando uma proteção de sobrecarga térmica do motor, o inversor pode proteger o motor parando diretamente a saída e a corrente, se necessário.

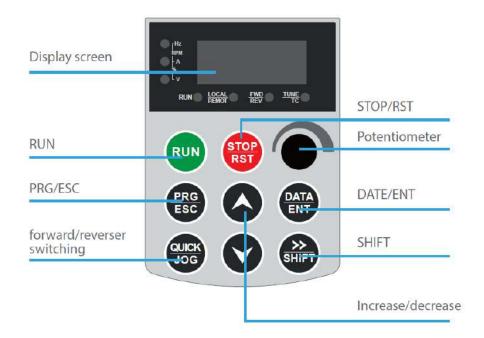
• Se o inversor estiver conectado a vários motores, cada motor, juntamente com seus cabos, precisa de um dispositivo de proteção individual (disjuntor motor ou relé térmico). Também são necessários fusíveis para protegê-los contra falhas de curto-circuito.

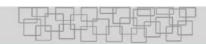
3.3.3. Conexão By-pass

Para algumas utilizações é necessário configurar um circuito de comutação entre a rede elétrica e o inversor para garantir que todo o sistema mantenha sua operação normal mesmo quando o inversor falhar. Para algumas práticas especiais, como aquelas em que o inversor é dedicado apenas para soft starter, a conexão que permanecerá na rede elétrica após a partida também precisa de um by-pass adequado.

Não conecte a fonte de alimentação aos terminais de saída U, V e W do inversor. A tensão nos cabos do motor pode causar danos permanentes ao inversor.

AVISO: Se houver necessidade de comutar a rede com frequência, aconselha-se a utilização de uma chave ou contator com intertravamento mecânico para garantir que os terminais do motor não sejam conectados aos cabos de alimentação de entrada e saídas do inversor ao mesmo tempo.




4. Operação do teclado

4.1. Descrição

O teclado é usado para exibir os dados de status do inversor e configurar os parâmetros.

IHM	Descrição da função
PRG/ESC	Entrar ou sair do modo de parametrização
DATE/ENT	Confirma a seleção/valor configurado
Setas Incrementa/ decrementa	Incrementar/decrementar o valor selecionado
SHIFT	No display, os parâmetros a serem exibidos podem ser selecionados ciclicamente; ao modificar os parâmetros, o dígito de modificação dos parâmetros pode ser selecionado através dessa tecla.
RUN	No modo de operação, use para inicializar o inversor
STOP/RST	No estado em execução, esta tecla pode ser usada para interromper a operação em execução. Quando o estado de alarme de falha é restrito pelo código de função P.04, todos os modos de controles podem ser usados para redefinir a operação por esta tecla.
Potenciômetro	Ajuste da frequência de saída do inversor (se habilitado no parâmetro F-02 valor 3)

4.1.1. Indicador LED

Inc	dicador LED		Mensagem
Hz	Vermelho	Aceso	Frequência de saída é mostrada no visor
Α	Vermelho	Aceso	Corrente de saída é mostrada no visor
V	Vermelho	Aceso	Voltagem de saída é mostrada no visor
A e V	Vermelho	Aceso	Potência de saída é mostrada no visor
RUN	Vermelho	Aceso	Inversor em funcionamento
	Vermelho	Aceso	Modo de controle do terminal partida/parada
LOCAL/REMOT		Desligado	Modo de controle do painel partida/parada
		Piscando	Controle da porta de comunicação
FWD/REV	Vermelho	Aceso	Motor girando em modo reverso
FWD/REV	vermenio	Desligado	Motor girando em modo normal
		Aceso	Controle de torque
TUNE/TC	Vormolho	Piscando rápido	Estado de falha
TONE/ IC	Vermelho	Piscando lento	Estado de autoajuste dos parâmetros

4.1.2. Função dos botões

Botão	Descrição		
PRG/ESC	Entrar ou sair do modo de setagem		
DATE/ENT	Confirmar a seleção/valor no modo de setagem		
RUN	No modo de operação por teclado, é usado para iniciar a operação		
STOP/RST	 No estado em execução, pressione este botão para interromper a operação em execução; No estado de alarme de falha, pode ser usado para operação de reset. A função desta tecla é restrita pelo código de função FA -01 (função da tecla STOP/RST). 		
	Incrementar o valor de setagem		
	Decrementar o valor de setagem		
▶▶ /SHIFT	Na interface de exibição de desligamento e na interface de exibição de operação, os parâmetros a serem exibidos podem ser selecionados ciclicamente; ao modificar os parâmetros, o bit de modificação dos parâmetros pode ser selecionado.		
QUICK/JOG	 Quando FF-03 não é igual a 0, diferentes modos de menu podem ser alternados de acordo com os valores em FF-03. Quando FF-03 é igual a 0, funções específicas podem ser selecionadas de acordo com o valor em FA-00, como comutação de 		

SIBRATE		ELETRÔNICA
	fonte de comando, comutação direta/reversa, etc.	
Potenciômetro	 Ajusta a frequência de saída Limita o torque máximo Ajusta o limite superior da frequência de saída Ajusta a voltagem de saída quando em modo V/F 	

4.2. Visor do painel

O visor permite alternar entre as telas que mostram o status de desligamento, status de operação, status de edição de código de função e status de alarme de falha.

4.2.1. Tela de desligamento

Quando o inversor está no modo de desligamento, o display mostra os parâmetros de status de desligamento. No estado de desligamento, vários parâmetros de estado podem ser exibidos. A partir da tela que mostra o FA-04 (status de desligamento), você pode selecionar para mostrar esses parâmetros alterando os campos de dois dígitos. Para a definição de cada código digital, consulte a descrição dos códigos de função do parâmetro FA-04. Sob o status de desligamento, existem 11 parâmetros disponíveis, que são: Configurações de frequência, tensão do barramento, status de entrada DI, status de saída DO, tensão AI1, tensão AI2, valor de contagem, valor de comprimento, estágio PLC, velocidade de carga, frequência de pulso de entrada PULSE. Você pode selecionar para mostrar esses parâmetros ciclicamente alterando os campos de dois dígitos a partir de FA-04 pressionando o botão » /SHIFT.

4.2.2. Tela de operação

Uma vez que o inversor recebe um comando de funcionamento válido e entra no estado de funcionamento, o teclado exibe o parâmetro do estado de operação, o indicador "RUN" no teclado acende, enquanto a luz "FWD/REV" está acesa ou apagada dependendo da direção de giro do motor. Sob este status de operação, existem 32 parâmetros disponíveis, que são: Frequência de operação, Configuração de frequência, Tensão de barramento, Tensão de saída, Corrente de saída, Potência de saída, Torque de saída, Status de entrada DI, Status de saída DO, Tensão AI1, Tensão AI2, Contagem valor, valor de comprimento, velocidade de carga, configuração PID, feedback PID, estágio PLC, frequência de pulso de entrada PULSE, frequência de operação 2, tempo de operação restante, velocidade linear, tempo de ativação atual, tempo de operação atual, frequência de pulso de entrada PULSE, configuração de comunicação, Frequência principal X, Frequência auxiliar Y, Valor de torque alvo, Ângulo do fator de potência, Tensão alvo de separação VF, Status de entrada Visual DI e status de entrada Visual DO. A partir do código "FA-02" ou "FA-03", pressione o botão < PNT> para ativar as duas seleções digitais e pressione o botão < PNT> para alterar ciclicamente o código do parâmetro.

4.2.3. Tela de estado de erro

Quando o inversor detecta um sinal de falha, ele entra no status de alarme de falha, o teclado exibe o código de falha

+55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

e o indicador "TC" na IHM pisca. A operação de reset de falha pode ser executada através da tecla "STOP/RST", terminal de controle ou um comando de comunicação. Enquanto a falha persistir, o código de falha será exibido.

4.2.4. Tela de parametrização do código da função

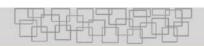
Nas telas de desligamento, operação ou alarme de falha, você pode pressionar a tecla "PRG/ESC" para entrar na tela de parametrização (se uma senha de usuário for necessária aqui, veja a descrição do parâmetro FF-00). A tela de edição é uma tela de três menus de nível, e os níveis são: *Conjunto de códigos de função* → *Etiqueta do código de função* → *Parâmetro do código de função*. Pressionando a tecla "DATA/ENT", você pode entrar na tela de etiqueta de código de função e, em seguida, na tela de parâmetro de função. Na tela de parâmetros de função, você pode salvar o parâmetro pressionando a tecla "DATA/ENT". Ao pressionar o botão "PRG/ESC", você pode sair do menu atual e voltar para a tela do menu anterior.

4.3. Teclado de operação

Várias operações do inversor podem ser executadas através do teclado. Para a descrição dos códigos de função, consulte a tabela de resumo de códigos de função.

4.3.1. Alterando o código de função do inversor

O inversor fornece um menu de três níveis, e os três níveis são:


- 1. Número do conjunto de código de função (menu de primeiro nível);
- 2. Etiqueta do código de função (menu de segundo nível);
- 3. Valor do código de função (menu de terceiro nível)

AVISO: Quando estiver no menu de terceiro nível, pressionar a tecla "PRG/ESC" ou a tecla "DATA/ENT" permite retornar ao menu de segundo nível. A diferença entre as duas chaves é: Pressionar a tecla "DATA/ENT" primeiro salvará o parâmetro do código de função atual e, em seguida, não apenas retornará ao menu de segundo nível, mas também passará para o próximo código de função. Uma pressão na tecla "PRG/ESC" retornará diretamente ao menu de segundo nível e ao código de função atual, sem salvar o parâmetro.

No menu de três níveis, se nenhum dos dígitos do parâmetro estiver piscando, significa que o código de função não pode ser modificado devido a um dos motivos abaixo:

- Este parâmetro é um dos parâmetros não modificáveis, como parâmetros de teste, parâmetros operacionais registrados, etc.;
- Este parâmetro não pode ser modificado no estado de operação. A modificação é permitida somente quando o inversor está parado.

Exemplo: Modificando o parâmetro do código de função F0-00 de 0 para 1; F0-01 de 50,00 a 50,01 ou 40,00.

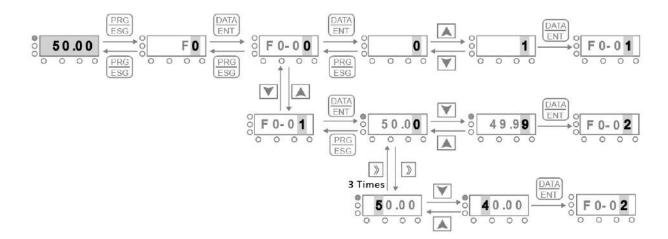


Diagrama de modificação de parâmetro

4.3.2. Senha de proteção

O inversor vem com um recurso de proteção por senha do usuário. Quando FF-00 for alterado para um valor diferente de zero, o valor se tornará a senha do usuário e entrará em vigor após você sair do estado de edição do código de função. Depois, toda vez que você pressionar a tecla "PRG/ESC" para tentar editar o código de função, "00000" será exibido e solicitará que você digite a senha e somente a senha correta permite que você prossiga. Se você quiser desabilitar o recurso de senha, basta definir o FF-00 para 0. O recurso de senha entrará em vigor em um minuto após você sair do estado de edição do código de função. Depois, toda vez que você pressionar a tecla "PRG/ESC" para tentar editar o código de função, "00000" será exibido e solicitará que você digite a senha e somente a senha correta permite que você prossiga.

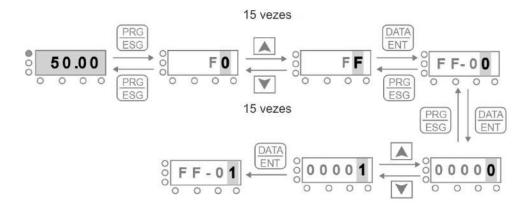
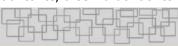


Diagrama de configuração da senha


5. Lista de parâmetros de funções

Os parâmetros de função dos inversores da série VFD são agrupados por suas funções em 23 conjuntos, incluindo F0 ~ F9, FA ~ FF, P0 ~ P5 e U0. Cada conjunto de funções consiste em vários códigos de função. Um menu de três níveis é construído aqui para permitir que você acesse e manipule os códigos de função. Por exemplo, "F1-06" significa o código de função nº 6 do conjunto F1. Entre eles, P5 é especial pois é um parâmetro de função de fábrica que os usuários não têm permissão para acessar.

Para facilitar a configuração dos códigos de função através do teclado, o menu de primeiro nível mostra o número do conjunto de funções, o menu de segundo nível mostra o número do código de função e o menu de terceiro nível mostra o parâmetro do código de função.

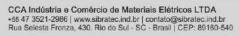
- 1. As colunas da tabela de funções são as seguintes: A primeira coluna é "Código de função", que é a numeração dos conjuntos de parâmetros e parâmetros de função correspondentes. A segunda coluna é "Nome", que é o nome completo do parâmetro da função correspondente. A terceira coluna é "Faixa", que descreve os detalhes do parâmetro da função correspondente. A quarta coluna é "Padrão", que é o valor padrão do parâmetro da função correspondente. A quinta coluna é "Modificação", que é o atributo de modificação que mostra a disponibilidade e condição modificáveis conforme descrito abaixo:
- "\\[''\\\ '': É modificável independentemente do inversor estar em modo de parada ou de operação;
- "★": Não é modificável se o inversor estiver em operação
- "•": Não é modificável porque é um parâmetro de teste
- (O inversor verificará e salvará automaticamente o atributo de cada parâmetro para evitar que os parâmetros sejam alterados acidentalmente.)
- 2. O parâmetro é expresso em formato decimal (DEC). Se for alterado para o formato hexadecimal, cada dígito do valor do parâmetro pode ser editado de forma independente e varia de 0 a F.
- 3. "Padrão" indica que o parâmetro do código de função correspondente foi atualizado e restaurado para seu valor padrão como resultado de uma operação de restauração. Mas os valores detectados e registrados não serão restaurados.
- 4. Para proteger os parâmetros de forma mais eficaz, o inversor vem com um recurso de proteção por senha. Uma vez que uma senha de usuário é definida e ativada (onde o parâmetro diferente de 0 de FF-00 é a senha), toda vez que o usuário pressionar a tecla PRG/ESC e tentar editar os códigos de função, o sistema solicitará primeiro a senha do usuário verificação exibindo "00000". A menos que o usuário insira a senha de usuário correta, o sistema não permitirá nenhuma ação adicional. Para os parâmetros de configuração do fabricante, a senha do fabricante deve ser

inserida corretamente antes da edição (Aconselha-se aos usuários não modificar os parâmetros configurados pelo fabricante). Se os parâmetros forem configurados incorretamente, o inversor pode funcionar de forma anormal ou até mesmo ser danificado. Quando o recurso de proteção por senha não está ativado, a senha do usuário pode ser alterada a qualquer momento. Somente a senha definida da última vez será a que será usada. Quando o valor de FF-00 for definido como 0, o recurso de senha do usuário será desabilitado; se o valor não for 0, esse valor se tornará a senha que protege os parâmetros de serem modificados. O recurso de senha de usuário também se aplica à tentativa de modificação por meio de comunicação serial.

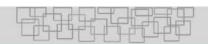
AVISO: O inversor verificará e salvará automaticamente o atributo de modificação de cada parâmetro para evitar que os parâmetros sejam alterados acidentalmente.

5.1. Grupo FO - Funções Básicas

Código	Nome	Faixa de ajuste	Padrão	Código
F0-00	Método de controle	0: Controle vetorial sensores (SVC) 1: Controle escalar V/F	1	*
F0-01	Pressão de frequência	0.00Hz ~ Frequência máxima (F0-09)	50.00Hz	☆
F0-02	Seleção de referência da frequência principal (X)	0: Setagem digital em F0-01, pode ser modificada, dados perdidos quando o inversor for desligado 1: Setagem digital em F0-02, pode ser modificada, dados perdidos quando o inversor for desligado 2: Entrada analógica AI1 3: Entrada analógica AI2 (Potenciômetro) 4: Entrada por pulsos (DI5) 5: Setagem por múltiplas instruções 6: Setagem via CLP 7: PID 8: Setagem via porta de comunicação	0	*
F0-03	Seleção de referência da frequência auxiliar (Y)	A mesma de F0-02 (Seleção de referência da frequência principal (X))	0	*
F0-04	Seleção de referência da frequência auxiliar (Y) durante a superposição	0: Relativa à máxima frequência1: Relativa à referência de frequência X	0	☆
F0-05	Seleção de referência da	0% ~ 150%	0%	☆

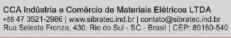

CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

Código	Nome	Faixa de ajuste	Padrão	Código
	frequência auxiliar			
	(Y) em estado de			
	superposição	Digito das unidades: Seleção da		
		referência da frequência		
		0: Referência de frequência principal X		
		1. Docultado do cálculo principal o		
		1: Resultado do cálculo principal e auxiliar (o algoritmo usado aqui é		
		determinado pelo décimo dígito)		
		2: Alternar entre a referência de		
		frequência principal X e a referência de frequência auxiliar Y		
		3: Alternar entre a referência de		
	Seleção de	frequência principal X e o resultado do		
F0-06	referência da frequência de	cálculo principal e auxiliar	00	☆
	superposição	4: Alternar entre a referência de frequência auxiliar Y e o resultado do		
		cálculo principal e auxiliar		
		Dígito das dezenas: Algoritmo de		
		cálculo da referência de frequência		
		principal e auxiliar		
		0: Principal + Auxiliar		
		1: Principal—Auxiliar		
		2: O maior dos dois		
		3: O menor dos dois		
	Memória de backup	0. Não calva ao deconorgizar : 1. Calva		
F0-07	para referência de	0: Não salva ao desenergizar ; 1: Salva ao desenergizar	0	☆
	frequência digital	-		
	Calação do contido	0: Sentido horário padrão (Indicador FWD/REV desligado)		
F0-08	Seleção de sentido de rotação padrão	1: Sentido anti-horário padrão	0	☆
	de rotação padrão	(Indicador FWD/REV ligado)		
F0-09	Frequência máxima	50.00Hz ~ 500.00Hz	50.00Hz	*
		0: F0-11		
		1: Entrada analógica AI1		
F0 40	Fonte do limite	2: Entrada analógica AI2		
F0-10	superior de	(Potenciômetro)	0	*
	frequência	3: PULSE – Setagem por pulsos		
		4: Porta de comunicação		
EO 11	limite superior da	Limite inferior F0-12 até frequência	E0 00H-	
F0-11	frequência	máxima F0-09	50.00Hz	☆
F0-12	Limite inferior da	0.00Hz ~ Limite superior F0-11	0.00Hz	☆
	frequência	·		×
F0-13	Tempo de	0.00s ~ 650.00s(F0-15=2)	Resolução	☆



Código	Nome	Faixa de ajuste	Padrão	Código
	aceleração 1	0.0s ~ 6500.0s(F0-15=1)	definida no parâmetro(F0-15)	
		0s ~ 65000s(F0-15=0)	parametro(10-13)	
	Tempo de	0.00s ~ 650.00s(F0-15=2)	Resolução	
F0-14	desaceleração	0.0s ~ 6500.0s(F0-15=1)	definida no	☆
	1	0s ~ 65000s(F0-15=0)	parâmetro(F0-15)	
	Resolução de	0: 1s		
F0-15	tempo de	1: 0.1s	1	*
	aceleração/desacel eração	2: 0.01s		^
	Referência de	0: Frequência máxima (F0-09)		
F0-16	frequência para	1: frequência ajustada no parâmetro	0	*
1010	cálculo das rampas	(F0-01)		^
	de acc	2: 100Hz		
F0-17	Resolução do comando de	1: 0.1Hz	2	©
FU-17	comando de frequência	2: 0.01Hz	2	9
	Frequência de		Depende do modelo de inversor	
F0-18	chaveamento	0.8kHz ~ 8.0kHz		☆
F0-19	Frequência de chaveamento ajustado pela temperatura	0: Desabilitado 1: Ativo frequência de chaveamento limite inferior= 1khz 2: Ativo frequência de chaveamento limite inferior= 2khz 3: Ativo frequência de chaveamento limite inferior= 3khz 4: Ativo frequência de chaveamento limite inferior= 4khz	1	☆
F0-20	Fonte de frequência de agrupamento da fonte de comando	Dígito das unidades: Seleção da fonte de frequência de ligação do comando do painel de operação 0: Desabilitado 1: Referência digital de frequência 2: Entrada analógica AI1 3: Entrada analógica AI2(Pot.) 4: Entrada de pulso (DI5) 5: Multivelocidade 6: Por CLP 7: PID 8: Via porta de comunicação	0	☆

Código	Nome	Faixa de ajuste	Padrão	Código
		Dígito das dezenas: Seleção da fonte de frequência de ligação do comando do terminal (igual ao dígito das unidades)		
		Dígito das centenas: Seleção da fonte de frequência de ligação do comando de comunicação (igual ao dígito das unidades)		
		0: Comando via painel (LED desligado)		
F0-21	Seleção da fonte de	1: Comando via terminal (LED ligado)	0	☆
. 5 = 1	comando	2: Comando via comunicação serial (LED piscando)	•	
F0 33		1: Tipo G (Carga com torque constante)	Depende do	
F0-22	Tipo de visor GP	2: Tipo P (Ventilador, bomba, etc)	modelo de inversor	•



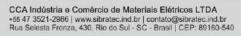
5.2. Grupo F1 - Parâmetros de controle Partida/Parada

Código	Nome	Faixa de ajuste	Padrão	Código
F1-00	Método de partida	O: Partida direta 1: Partida com rastreamento de velocidade 2: Partida de excitação do motor assíncrono	0	☆
F1-01	Método de rastreamento de velocidade	 Parte da frequência que parou Parte do zero Parte da frequência máxima 	0	*
F1-02	Frequência de partida	0.00Hz ~ 10.00Hz	0.00Hz	☆
F1-03	Tempo em que o motor permanece na frequência inicial (F1-02) antes de iniciar a rampa de aceleração	0.0s ~ 100.0s	0.0s	*
F1-04	Corrente de frenagem na partida	0 ~ 100%	0%	*
F1-05	Tempo de frenagem antes de iniciar a partida	0.0s ~ 100.0s	0.0s	*
F1-06	Método de parada do motor	0: Rampa de desaceleração 1: Livre (por inércia)	0	☆
F1-07	Frequência inicial para frenagem CC	0.00Hz ~ Frequência máxima	0.00Hz	☆
F1-08	Tempo para iniciar a frenagem CC	0.0s ~ 100.0s	0.0s	☆
F1-09	Corrente de frenagem CC	0% ~ 100%	0%	☆
F1-10	Tempo de frenagem CC	0.0s ~ 100.0s	0.0s	☆
F1-11	Modo de aceleração e desaceleração	O: Aceleração e desaceleração linear 1: Curva S de aceleração e de desaceleração A 2: Curva S de aceleração e de desaceleração B	0	*
F1-12	Relação de tempo de início da curva S	0.0% ~ (100.0%-F1-13)	30.0%	*
F1-13	Relação de tempo de início da curva S	0.0% ~ (100.0%-F1-12)	30.0%	*
F1-14	Ponto de frenagem dinâmico	Modelos monofásicos: 200.0 ~ 410.0V Modelos trifásicos: 310.0 ~ 800.0V	350.0 (Monofásico) 700.0 (Trifásico)	☆
F1-15	Taxa de uso do freio	0 ~ 100%	100%	☆
F1-16	Tempo de	1~ 100	20	☆

				ELLINOMOA
Código	Nome	Faixa de ajuste	Padrão	Código
	escaneamento de			
	velocidade do			
	motor			
	Escaneamento de			
F1-17	velocidade do	0~ 1000	500	☆
11-17	motor por corrente	0.0 1000	300	A
	em elo fechado KP			
	Escaneamento de			
F1-18	velocidade do	0~ 1000	800	☆
1110	motor por corrente	0.1000	000	^
	em elo fechado KI			
	Valor do			
	Escaneamento de			
F1-19	velocidade do	30~ 200	100	*
	motor por corrente			
	em elo fechado			
	Valor do limite do			
	escaneamento de			
F1-20	velocidade do	10~ 100	30	*
	motor por corrente			
	em elo fechado			
	Escaneamento de			
F1-21	velocidade do	0.5~ 3.0	1.1	*
	motor tempo de			
	subida da tensão			
	Tompo do			
F1-22	Tempo de	0.00~ 5.00	1.00	*
	desmagnetização			
	l			

5.3. Grupo F2 - Parâmetros de Controle

Código	Nome	Faixa de ajuste	Padrão	Código
F2-00	Compensação de torque	0.0% : (Compensação de torque automático) 0.1% ~ 30.0%	Depende do modelo do inversor	☆
F2-01	limite de frequência para compensação do torque	0.00Hz ~ Frequência máxima (F0-09)	50.00Hz	*
F2-02	Compensação de escorregamento VF	0.0% ~ 200.0%	0.0%	☆
F2-03	VF ganho de excitação	0 ~ 200	60	☆
F2-04	Ganho de supressão de oscilação VF	0 ~ 100	Depende do modelo do inversor	☆
F2-05	Configuração de curva VF	0: Linear V/F 1: Multipontos V/F 2: Quadrática V/F 3: 1.2 Potência V/F 4: 1.4 Potência V/F 5: 1.6 Potência V/F 6: 1.8 Potência V/F 10: VF Modo totalmente separado 11: VF Modo semi separado	0	*
F2-06	Multiponto VF frequência ponto 1	0.00Hz ~ F2-08	0.00Hz	*
F2-07	Multiponto VF tensão ponto 1	0.0% ~ 100.0%	0.0%	*
F2-08	Multiponto VF frequência ponto 2	F2-06 ~ F2-10	0.00Hz	*
F2-09	Multiponto VF tensão ponto 2	0.0% ~ 100.0%	0.0%	*
F2-10	Multiponto VF frequência ponto 3	F2-08 ~ Frequência nominal do motor (F3-03)	0.00Hz	*
F2-11	Multiponto VF tensão ponto 3	0.0% ~ 100.0%	0.0%	*
F2-12	Modo de ganho de supressão de oscilação	0 ~ 4	3	*
F2-13	VF: seleção da fonte de tensão separada	0: Seleção digital (F2-14) 1: AI1 1: Entrada analógica AI1 2: Entrada analógica AI2(Pot.) 3: Entrada de pulso (DI5) 5: CLP simples 6: PID 7: Porta de comunicação	0	*



CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

				ELETRONICA
Código	Nome	Faixa de ajuste	Padrão	Código
		Atenção: 100,0% correspondem à tensão nominal do motor		
F2-14	VF: configuração separada de tensão digital	0V ~tensão nominal do motor(F3-01)	0V	☆
F2-15	VF: Tempo de aceleração de tensão da separada	Atenção: O intervalo de tempo de 0V até a tensão nominal do motor	0.0s	☆
F2-16	VF: Tempo de aceleração de tensão da separada	Atenção: O intervalo de tempo de 0V até a tensão nominal do motor	0.0s	☆
F2-17	VF: Seleção de desligamento da separação	0:Quando a frequência ou tensão for 0 1: Depois que a tensão é reduzida a 0,a frequência também é reduzida	0	☆
F2-18	Parada por sobrecorrente	50 ~ 200%	150%	*
F2-19	Bloqueio por sobrecorrente	0 : habilitado 1 : desabilitado	1	*
F2-20	Supressão do ganho por sobrecorrente de parada	0 ~ 100	20	☆
F2-21	Supressão do ganho por sobrecorrente de dupla velocidade de parada	50 ~ 200%	50%	*
F2-22	Tensão de máxima de operação de parada	Modelo monofásico: 160.0 ~ 410.0V Modelo trifásico: 200.0 ~ 800.0V	380.0V (Monofásico) 760.0V (Trifásico)	*
F2-23	Sobretensão na parada	0 : habilitado 1 : desabilitado	1	*
F2-24	Supressão de ganho de frequência parada por sobretensão	0 ~ 100	30	¥
F2-25	Supressão de ganho de tensão para parada por sobretensão	0 ~ 100	30	☆
F2-26	Máxima frequência limite para parada por sobretensão	0 ~ 50Hz	5Hz	*
F2-27	Constante de tempo para compensação de escorregamento	0.1 ~ 10.0	0.5	☆
F2-28	Ativação automática de aumento de frequência	0 : Desabilitado 1 : Habilitado	0	*

Código	Nome	Faixa de ajuste	Padrão	Código
F2-29	Corrente mínima de torque	10 ~ 100%	50%	*
F2-30	Corrente máxima de torque	10 ~ 100%	20%	*
F2-31	Aumento automático de frequência KP	0 ~ 100	50	ጵ
F2-32	Aumento automático de frequência KI	0 ~ 100	50	ጵ
F2-33	Ganho de compensação de torque em linha	80 ~ 150	100	*

5.4. Grupo F3 – Primeiros Parâmetros de Controle Vetorial do Motor

Código	Nome	Faixa de ajuste	Padrão	Código
F3-00	Potência nominal do motor	0.1kW ~ 1000.0kW	Depende do modelo do inversor	*
F3-01	Tensão nominal do motor	1V ~ 2000V	Depende do modelo do inversor	*
F3-02	Corrente nominal do motor	0.01A ~ 655.35A (Potência do inversor ≤55kW) 0.1A ~ 6553.5A (Potência do inversor >55kW)	Depende do modelo do inversor	*
F3-03	Frequência nominal do motor	0.01Hz ~ Frequência máxima	Depende do modelo do inversor	*
F3-04	Rotação nominal do motor	1rpm ~ 65535rpm	Depende do modelo do inversor	*
F3-05	Resistência do estator do motor	$0.001\Omega \sim 65.535\Omega$ (Inversores compotência $\leq 55kW$) $0.0001\Omega \sim 6.5535\Omega$ (Potência do inversor >55kW)	Parâmetros de autoajuste	*
F3-06	Resistência do motor do motor	$0.001\Omega \sim 65.535\Omega$ (Potência do inversor ≤ 55 kW) $0.0001\Omega \sim 6.5535\Omega$ (Potência do inversor >55kW)	Parâmetros de autoajuste	*
F3-07	Perda de indutância do motor	0.01mH ~ 655.35mH (Potência do inversor ≤55kW) 0.001mH ~ 65.535mH (Potência do inversor >55kW)	Parâmetros de autoajuste	*
F3-08	Indutância mútua do motor	0.1mH ~ 6553.5mH (Potência do inversor ≤55kW) 0.01mH ~ 655.35mH (Potência do inversor >55kW)	Parâmetros de autoajuste	*
F3-09	Corrente do motor a vazio	0.01A ~ F3-02 (Potência do inversor ≤55kW) 0.1A ~ F3-02 (Potência do inversor >55kW)	Parâmetros de sintonização	*
F3-10	Opções de autoajuste	0 : Desabilitado 1: Autoajuste simples com o motor parado 2: Autoajuste completo 3: Autoajuste completo com o motor parado	0	*

5.5. Grupo F4 - Parâmetros de Controle Vetorial

Código	Nome	Faixa de ajuste	Padrão	Código
F4-00	Ganho proporcional do loop de velocidade 1	1 ~ 100	30	☆
F4-01	Tempo integral do loop de velocidade 1	0.01s ~ 10.00s	0.50s	☆
F4-02	Chaveamento de frequência 1	0.00 ~ F4-05	5.00Hz	☆
F4-03	Ganho proporcional do loop de velocidade 2	1 ~ 100	20	☆
F4-04	Tempo integral do loop de velocidade 2	0.01s ~ 10.00s	1.00s	*
F4-05	Chaveamento de frequência 2	F4-02 ~ Frequência máxima (F0-09)	10.00Hz	☆
F4-06	SVC tempo de filtro da realimentação de velocidade	0.000s ~ 1.000s	0.000s	☆
	Propriedades	Dígito das unidades: Separação integral		
F4-07	integrais do loop de	0: Habilitado	0	☆
	velocidade	1: Desabilitado		
F4-08	Ganho de escorregamento no controle vetorial	50% ~ 200%	100%	☆
		0: A partir do parâmetro F4-10		
		1: Entrada analógica AI1		
	Referência do limite	2: Entrada analógica AI2(Pot.)		
F4-09	superior do torque para controle de	3: Entrada de pulso	0	☆
	velocidade	4: Porta de comunicação		
		O fundo de escala é limitado pelo parâmetro F4-10		
F4-10	Ajuste digital de limite superior de torque para o modo de controle de velocidade	0.0% ~ 200.0%	150.0%	☆
		0 : Parâmetro F4-12	0	☆
		1 : Entrada analógica AI1		
	Fonte de limite	2 : Entrada analógica AI2(Pot.)		
F4-11	superior de torque	3 : Entrada de pulso		
	de controle de velocidade (freio)	4 : Porta de comunicação		
	velocidade (IICIO)	1-4: Parâmetros da comunicação:		
		O fundo de escala da opção 1-4 corresponde a F4-10		
F4-12	Ajuste digital de	$0.0\% \sim 200.0\%$	150.0%	☆

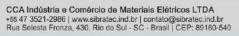
Código	Nome	Faixa de ajuste	Padrão	Código
	limite superior de torque no controle de velocidade (freio)			<u> </u>
F4-14	Ganho proporcional de regulação de excitação	0 ~ 60000	2000	*
F4-15	Ganho integral de regulação de excitação	0 ~ 60000	1300	*
F4-16	Ganho proporcional de ajuste de torque	0 ~ 60000	2000	*
F4-17	Ganho integral de ajuste de torque	0 ~ 60000	1300	*
F4-18	Fator de enfraquecimento do fluxo sincronizado	0~ 2	0	*
F4-19	Fator de enfraquecimento do fluxo sincronizado	0~ 1	0	¥
F4-20	Corrente máxima de enfraquecimento de fluxo	100~ 110	Depende do modelo do inversor	*
F4-21	Fator de ajuste automático de enfraquecimento de fluxo	50~ 200	100	ά
F4-22	Habilita o gerador torque no modo de velocidade	0~ 1	0	*

5.6. Grupo F5 - Parâmetros do Controle de Torque

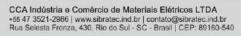
Código	Nome	Faixa de ajuste	Padrão	Código
FF 00	Opções de modo de	0:Controle de velocidade		
F5-00	controle de velocidade/torque	1: Controle de torque	0	☆
		0: Parâmetro (F5-03)		
	Opções de fonte de	1: Entrada analógica AI1		
F5-01	ajuste de torque para o modo de	2: Entrada analógica AI2 (Potenciômetro)	0	☆
	controle de torque	3: Entrada de pulso (Di5)		
		4: Porta de comunicação		
F5-03	Ajuste digital de torque para o modo de controle de torque	-200.0% ~ 200.0%	150.0%	*
F5-04	Filtro de torque	0 ~ 100.0%	0.0%	☆
F5-05	Frequência máxima de torque horário (FWD)	0.00Hz ~ frequência máxima(F0-09)	50.00Hz	☆
F5-06	Frequência máxima de torque sentido anti-horário (REV)	0.00Hz ~ frequência máxima (F0-09)	50.00Hz	☆
F5-07	Tempo de aceleração do torque	0.00s ~ 650.00s	0.00s	ጵ
F5-08	Tempo de desaceleração do torque	0.00s ~ 650.00s	0.00s	ጵ

5.7. Grupo F6 - Parâmetros do terminal de entrada

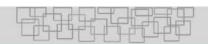
Código	Nome	Faixa de ajuste	Padrão	Código
		0: Sem função		
	Opções da entrada digital DI1	1: Gira modo horário (FWD)		
F6-00		2: Gira modo anti-horário (REV) ATENÇÃO: Quando definido como 1, 2, ele precisa ser usado em conjunto com o modo de comando via bornes (F6-11) 3: Opção de controle via 3 fios 4: Modo jog horário (FWD-jog) 5: Modo jog anti-horário (REV-jog) 6: Terminal incrementa 7: Terminal decrementa 8: Parada livre 9: Entrada Reset falha do inversor 10: Pausa nas operaçoes 11: Entrada para falha externa (NA)		*
		12: Multi-segmento terminal 1 13: Multi-seção terminal 2		
		14: Multi-estagio terminal 3		
		15: Multi-seção terminal 4		
		16: Tempo de aceleração/desaceleração terminal 1		
		17: Tempo de aceleração/desaceleração terminal 2		
	Opções da entrada	18: Comutação da fonte de referência de frequência		
F6-01	digital DI2	19: Zera configuração UP/DOWN (terminal, teclado)	4	*
		20: Terminal de comutação de		
		comando de controle 1 21: Proibição da aceleração e		
		desaceleração		
		22: Pausa no PID		
		23: Reset no status do CLP		
		24: Pausa de frequência de oscilação		
		25: Entrada para o contador		
F6-02	Opções da entrada	26: Reset do contador	9	*



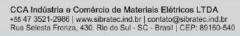
Cádigo	Nome	Eniva de niueto	Padrão	Código
Código	digital DI3	Faixa de ajuste 27: Comprimento da entrada de	Paulau	Coulgo
	aigitai Dis	contagem		
		28: Reset do comprimento		
		29: Desabilita controle de torque		
		30: Entrada em pulsos de frequência		
		(Válida somente para DI5) 31: Frenagem DC imediata		
		32: Entrada para falha externa (NF)		
		33: Habilita alteração de frequência		
		34: Reverse PID action direction		
F6-03	Opções da entrada	35: Terminal de parada externa 1	12	*
	digital DI4	36: Terminal de parada externa 1		
		comando de controle 2		
		37: Suspende a integração PID		
		38: seleciona referência de frequência principal		
		39: seleciona referência de frequência auxiliar		
	Opções da entrada digital DI5	40: Comutação de parâmetro PID		
		41: Falha definida pelo usuário 1	. 13	*
F6-04		42: Falha definida pelo usuário 2		
		43: Comuta modo de controle velocidade/torque		
		44: Parada de emergência		
		45: Terminal de parada externa 2		
		46: Frenagem CC na desaceleração		
		47: Limpa o tempo de execução atual		
F6-05	DI filtro	0.000s ~ 1.000s	0.010s	☆
F6-06	DI1 filtro	0.0s ~ 3600.0s	0.0s	☆
F6-07	DI2 filtro	0.0s ~ 3600.0s	0.0s	☆
F6-08	DI3 filtro	0.0s ~ 3600.0s	0.0s	☆
F6-09	DI4 filtro	0.0s ~ 3600.0s	0.0s	☆
		0: Nível alto é ativo		
		1: Nível baixo é ativo		
	, , , , ,	Dígito das unidades: DI1		
F6-10	DI opções de nível lógico	Dígito das dezenas: DI2	0	*
	logico	Dígito das centenas: DI3		
		Dígito dos milhares: DI4		
		Dígito dos 10 mil: DI5		
		0: Modo 1: 2 fios		
FC 11	Modo de comando	1: Modo 2: 2 fios		
F6-11	das entradas digitais	2: Modo 1: 3 fios	0	*
	3	3: Modo 2: 3 fios		



					ELETRONICA	
Código	Nome	Faixa de ajuste		Padrão	Código	
F6-12	Terminal UP/DOWN resolução	0.001Hz/s /	~ 65.535Hz/s	1.000Hz/s	☆	
F6-13	Entrada mínima da curva AI 1	0.00V ~ F6	-15	0.00V	☆	
F6-14	configuração correspondente de entrada mínima de curva AI1	-100.0% ~	+100.0%	0.0%	☆	
F6-15	Entrada máxima da curva AI1	F6-13 ~ +1	0.00V	10.00V	☆	
F6-16	configuração correspondente de entrada máxima da curva AI1	-100.0% ~	+100.0%	100.0%	☆	
F6-17	AI1 tempo de filtro	0.00s ~ 10.	.00s	0.10s	☆	
F6-18	Entrada mínima da curva AI2	0.00V ~ F6	-20	0.00V	☆	
F6-19	Configuração correspondente de entrada mínima de curva AI2	-100.0% ~ +100.0%		100.0%	አ	
F6-20	Entrada máxima da curva AI2	F6-18 ~ +1	0.00V	2.80V	☆	
F6-21	Configuração correspondente de entrada máxima da curva AI2	-100.0% ~ +100.0%		0.0%	ቷ	
F6-22	Filtro de tempo potenciômetro	0.00s ~ 10.	.00s	0.10s	☆	
		Dígito das unidades	Seleção da curva entrada analógica Curva 1 (2 pontos,			
F6-23	Seleção da curva entrada analógica	2	parâmetro F6-13 ~ F6-16) Curva 2 (2 pontos, parâmetro F6-18 ~ F6-21) Curva 3 (6 pontos,	21	አ	
		Digito das dezenas	parâmetro P3-04~P3-15) AI2 seleção de curva (igual ao algarismo das unidades)			
		Digito das unidades	Opção para AI1 menor que a configuração de entrada mínima			
F6 24	Opções para AI	0	Configuração mínima de entrada	00	٨	
F6-24	menor que a entrada mínima	1	0.0%	00	☆	
	Chicago milimo	Digito das dezenas	AI2 é menor do que a seleção de configuração de entrada mínima (igual ao algarismo das unidades)			
F6-25	AI1 seleção de sinal de entrada	0: O sinal on program 1: Sinal atu		0	0	



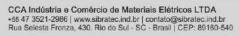
Código	Nome	Faixa de ajuste	Padrão	Código
F6-26	frequência mínima para entrada de pulso	0.00kHz ~ F6-28	0.00kHz	☆
F6-27	Configuração correspondente de entrada mínima pulso	-100.0% ~ 100.0%	0.0%	☆
F6-28	Configuração correspondente de entrada máxima pulso	F6-26 ~ 100.00kHz	50.00kHz	☆
F6-29	Configuração correspondente de entrada máxima de pulso	-100.0% ~ 100.0%	100.0%	☆
F6-30	Filtro de tempo para entrada de pulso	0.00s ~ 10.00s	0.10s	☆
F6-31	Seleção de função de terminal AI1	0: AI1 definido como entrada analógica 1~47: AI1 é usado como entrada digital DI, a função é a mesma que F6-00	0	*
F6-33	AI1 seleção de nível lógico	0: Nível alto é ativo	0	
F0-33				*



5.8. Grupo F7 - Parâmetros do Terminal de Saída

Código	Nome	Faixa de ajuste	Padrão	Código
F7-00	Seleção de saída digital	0: Saída em pulso de alta velocidade 1: Saída digital normal	0	☆
F7-01	Função da saída RL1	1: Inversor ligado 2: Saída de falha (para falha de parada por inércia) 3:Detecção de nível de frequência FDT1 4: Frequência nominal atingida 5: Rodando a frequência =0 (inversor parado) 6: Pré-alarme de sobrecarga do motor 7: Pré-alarme de sobrecarga do inversor 8: Valor de contagem atingido 9: Valor de contagem designado atingido 10: Comprimento atingido 11: Ciclo do CLP concluído 12: Tempo de operação acumulado atingido 13: Frequência sendo limitada 14: Torque sendo limitado 15: Pronto para operação 16: Frequência limite superior atingida 17: Frequência limite inferior atingida 17: Frequência limite inferior atingida (relacionadas a operação) 18: Subtensão 19: Configurações de comunicação 20: Operação no sinal de velocidade zero 2 (também saída quando a operação para) 21: Tempo de ativação acumulado atingido 22: Detecção de nível de frequência FDT2 23: Frequência 1 alcançada 24: Frequência 2 alcançada 25: Atual 1 atingido 26: Atual 2 atingido	0	*
F7-02	Função da saída digital DO	27: Time out 28: Entrada AI1 sobrecarregada 29: Carga caindo 30: Girando sentido reverso (REV) 31: Estado atual zero 32: Temperatura do módulo atingida 33: Limite de corrente de saída excedido 34: Frequência limite inferior atingida (também saída quando o inversor para) 35: Inversor em erro 36: Tempos de operação aumentados 37: Inversor em erro (somente para falhas de parada por inércia e não para	1	¥

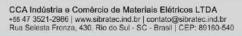
Código	Nome	Faixa de ajuste	Padrão	Código
counge	Itome	falhas de subtensão)	i daido	counge
F7-03	Função da saída analógica AO	0: Frequência de operação 1: Frequência programada 2: Saída proporcional á corrente 3: Saída proporcional ao torque 4: Saída proporcional a potência de saída 5: Saída proporcional a tensão de saída 6: Saída proporcional a pulso de entrada (100.0% correspondem até 100.0kHz de saída)	0	☆
F7-04	Função saída de pulso de alta velocidade	7: Valor da entrada analógica AI1 8: AI2 (valor do potenciômetro do teclado) 9: Tamanho do contador 10: Valor do contador 11: Porta de comunicação 12: Velocidade do motor 13: Saída proporcional a corrente (100.0%=1000.0A) 14: saída proporcional á tensão (100.0%=1000V) 15: Saída proporcional ao torque	0	*
F7-05	Frequência máxima de saída de pulso de alta velocidade	0.01KHz~100.00KHz	50.00KHz	☆
F7-06	AO bias coeficiente	-100.0% ~ +100.0%	0.0%	☆
F7-07	AO gain	-10.00 ~ +10.00	1.00	☆
F7-08	AO output filter time	0.000s ~ 1.000s	0.000s	☆
F7-10	RELAY1 output delay time	0.0s ~ 3600.0s	0.0s	☆
F7-11	DO output delay time	0.0s ~ 3600.0s	0.0s	☆
F7-12	DO output valid state selection Units digit: RELAY1 Tens digit: DO1		00	☆



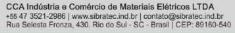
5.9. Grupo F8 - Falha e Proteção

Código	Nome	Faixa de ajuste	Padrão	Código
F8-00	Seleção de proteção contra sobrecarga do motor	0: Desabilitado 1: Habilitado	1	☆
F8-01	Ganho de proteção contra sobrecarga do motor	0.20 ~ 10.00	1.00	☆
F8-02	Coeficiente de aviso de sobrecarga do motor	50% ~ 100%	80%	☆
F8-03	Ganho de parada por sobretensão	0 ~ 100	20	☆
F8-04	Limite de proteção contra sobretensão	120% ~ 150%	130%	☆
F8-05	Over churn gain	0 ~ 100	20	☆
F8-06	Limite proteção de sobrecorrente	100% ~ 200%	150%	☆
F8-07	Proteção de fuga á terra	0: Desabilitado 1: Habilitado	1	☆
F8-08	Quantidade de auto reste de falhas	0 ~ 20	0	☆
F8-09	Falha durante o reset automático de falhas	0: Parada de operação	0	☆
	Seleção de ação do relé	1: Em operação		
F8-10	Tempo de intervalo de reinicialização automática de falhas	0.1s ~ 100.0s	1.0s	☆
F8-12	Falta de fase na saída	0: Desabilitado 1: Habilitado	1	☆
F8-13	Tipo de primeira falha	 Sem falha Falha de limitação de corrente onda a onda Sobrecorrente na aceleração Sobrecorrente na desaceleração Sobrecorrente em velocidade constante Sobretensão na aceleração Sobretensão na desaceleração Sobretensão em velocidade constante Sobrecorrente no resistor de frenagem Baixa tensão 	_	•
F8-14	Segunda falha mais recente	10: Sobrecarga no inversor11: Sobrecarga no motor	~	•

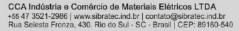
SIE	BRATEC			ELETRÔNICA
		12: Falta de fase na entrada 13: Falta de fase na saída 14: Sobreaquecimento no modulo IGBT 15: Falha externa 16: Comunicação anormal 17: Contator anormal 18: Detecção de corrente anormal 19: Autoajuste anormal 20: Leitura e escrita de parâmetros anormais 21: Hardware do inversor anormal 22: Falha a terra no Motor 23: Tempo de execução atingido		
F8-15	Terceira falha mais recente	24: Falha1 definida pelo usuário 25: Falha2 definida pelo usuário 26: Tempo de inicialização atingido 27: Sem carga 28: Feedback PID perdido durante a operação (fonte de frequência) 29: O desvio de velocidade é muito grande (o desvio entre o dado e o feedback) 30: Excesso de velocidade no motor 31: Proteção do inversor 32: Falha no disco de código 33: Sobre temperatura no motor 34: SVC stall fault 35: Falha na detecção da posição do polo magnético 36: Erro de feedback do sinal UVW 37: Falha de escravo ponto a ponto 38: Curto-circuito no resistor de frenagem 39: Motor ligado durante o funcionamento		•
F8-16	Frequência no momento que ocorreu a terceira última falha	-	-	•
F8-17	Corrente no momento que ocorreu a terceira última falha Tensão do	_	-	•
F8-18	Tensão do barramento CC no momento que ocorreu a terceira última falha	_	_	•


SIBRATEC Estado entradas digitais no F8-19 momento que ocorreu a terceira última falha Estado das saidas no momento que F8-20 ocorreu a terceira última falha Status do inversor no momento que F8-21 ocorreu a terceira última falha Tempo de inicialização no F8-22 momento que ocorreu a terceira última falha Tempo em que o inversor estava F8-23 ligado no momento ocorreu que terceira última falha Frequência momento que F8-24 ocorreu a segunda última falha Corrente no momento que F8-25 ocorreu a segunda última falha Tensão barramento CC no F8-26 momento que ocorreu a segunda última falha Estado das entradas digitais no F8-27 momento ocorreu a segunda última falha Estado das saídas no momento que F8-28 ocorreu a segunda última falha Status do inversor no momento que F8-29 ocorreu a segunda última falha Tempo de inicialização no F8-30 momento que ocorreu a segunda última falha F8-31 Tempo em que o

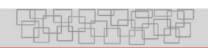
SIE	BRATEC				ELETRÔNICA
	inversor estava ligado no momento que ocorreu a segunda última falha				
F8-32	Frequência no momento que ocorreu a primeira última falha	_		_	•
F8-33	Corrente no momento que ocorreu a primeira última falha	_		-	•
F8-34	Tensão do barramento CC no momento que ocorreu a primeira última falha	_		_	•
F8-35	Estado das entradas digitais no momento que ocorreu a primeira última falha	_		-	•
F8-36	Estado das saídas no momento que ocorreu a segunda última falha	_		-	•
F8-37	Status do inversor no momento que ocorreu a primeira última falha	_		-	•
F8-38	Tempo em que o inversor estava ligado no momento que ocorreu a primeira última falha	_		_	•
F8-39	Tempo em que o inversor estava ligado no momento que ocorreu a segunda última falha	-		_	•
F8-40	Falha: ação da proteção seleção 1	Digito de unidades 0 1 2 Digito de dezena Digito de centena	Sobrecarga do motor (11) Parada por inercia Parar por sequência de desligamento Continua em operação Falta de fase alimentação (12) Falta de fase na saída (E13)Igual ao dígito das unidades)	00000	¥



SIBRATEC Diaito de Falha externa (E15)Igual milhar ao dígito das unidades) Digito Erro de comunicação (E16)Igual ao dígito das 10 mil unidades) Digito Leitura /escrita unidades parâmetros anormal (20) 0 Parada por inercia Parada por sequência de 1 desligamento Tempo de operação Digito atingido(E23) igual ao digito das unidades F8dezenas 40) Digito Falha definida pelo 1 Falha: ação F8-41 centenas usuário(E24) (igual ao 00000 ☆ proteção seleção 2 digito das unidades F8-40) Digito Falha 2 definida milhares usuário (E25) (igual ao digito das unidades F8-40) Atingido o tempo Digito 10000 inicialização(E26) (igual ao digito das unidades F8-40) Sem carga (E27) (igual Digito ao digito das unidades unidades F8-40) Feedback PID perdido durante a operação (E28) Digito dezenas (igual ao digito das unidades F8-40) O desvio de velocidade é muito grande (E29) igual Digito ao digito das unidades centenas F8-40 (atualmente 2,2 kW ação Falha: da F8-42 VFD não disponível) 쑈 proteção seleção 3 00000 Excesso de velocidade do motor (E30) (igual ao Digito digito das unidades F8milhares 40) atualmente 2,2 kW VFD não disponível) Falha na detecção posição do pólo Digito magnético (E35) igual ao 10000 digito das unidades F8-40(atualmente 2,2 kW VFD não disponível) Code disc fault (E32) igual Digito ao digito das unidades Falha: ação da F8-43 unidades F8-40 (atualmente 2,2 kW 샀 proteção seleção 4 00000 VFD não disponível) Digito Reservado



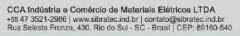
SIBRATEC dezenas Digito Reservado centenas Digito Reservado milhares Digito 1000 | Reservado 0: Frequência de operação atual Seleção 1frequência programada frequência para 2: limite superior da frequência F8-45 0 ☆ operação contínua 3: Limite inferior da frequência apesar de falhas 4: Frequência de espera anormal $0.0\% \sim 100.0\%$ Frequência de F8-46 100.0% (100.0% corresponde ao parâmetro F0-☆ backup anormal 09) 0: Invalido Seleção instantânea 1: Desacelera F8-47 função de 1 tolerância a falhas 2: Desacelera até parar Tensão definida para suspender a F8-48 operação em caso 80.0% ~ 100.0% 85.0% de falha instantânea Tempo de espera de recuperação de tensão para F8-49 $0.00s \sim 100.00s$ 0.50s operação contínua em caso de falha instantânea Tensão definida para operação 60.0% ~ 100.0%(tensão padrão do F8-50 contínua em caso 80.0% barramento) falha de instantânea 0: Desabilitado F8-51 Proteção sem carga 0 ☆ 1: Habilitado Nível de detecção F8-52 0.0% ~ 100.0% 10.0% ☆ sem carga Tempo de detecção F8-53 $0.0s \sim 60.0s$ 1.0s ☆ sem carga Valor de detecção 0.0% ~ 50.0% (frequência máxima) F8-54 excesso 20.0% ☆ velocidade Tempo de detecção 0.0s: sem detecção F8-55 de velocidade 1.0s ☆ $0.1 \sim 60.0s$ excessiva Valor de detecção desvio F8-56 0.0% ~ 50.0%(frequência máxima) 20.0% ☆ velocidade excessivo 0.0s: Sem detecção F8-57 Tempo de detecção 5.0s ☆



SIE	BRATEC			ELETRÔNICA
	de desvio de velocidade excessivo	0.1 ~ 60.0s		
F8-58	Desaceleração até parar Kp	0~100	30	*
F8-59	Desaceleração até parar Ki	0.0~300.0	20.0	*
F8-60	Configuração de tempo para parar	0~6500.0s	10.0s	☆

5.10. Grupo F9 - Parâmetros Auxiliares de Função

frequência de JOG Tempo de aceleração JOG	0.00Hz ~ frequência máxima (F0-09)	5.00Hz	☆
			W
	0.0s ~ 6500.0s	20.0s	☆
Tempo de desaceleração JOG	0.0s ~ 6500.0s	20.0s	☆
Tempo de aceleração 2	0.0s ~ 6500.0s	Depende do modelo do inversor	☆
Tempo de desaceleração 2	0.0s ~ 6500.0s	Depende do modelo do inversor	☆
Tempo de aceleração 3	0.0s ~ 6500.0s	Depende do modelo do inversor	☆
Tempo de desaceleração 3	0.0s ~ 6500.0s	modelo do inversor	☆
Tempo de aceleração 4	0.0s ~ 6500.0s	modelo do inversor	☆
Tempo de desaceleração 4	0.0s ~ 6500.0s	Depende do modelo do inversor	☆
Tempo de aceleração 1,2 ponto de frequência de comutação	0.00Hz ~ frequência máxima (F0-09)	0.00Hz	☆
Tempo de desaceleração 1,2 ponto de frequência de comutação	0.00Hz ~ frequência máxima (F0-09)	0.00Hz	*
Prioridade de jog do terminal	0: Desabilitado 1:Habilitado	0	☆
Avançar/retorno tempo morto	0.0s ~ 3000.0s	0.0s	☆
Controle de reversão	0: Habilitado 1: Desabilitado	0	☆
Ação quando a frequência definida é inferior à frequência limite inferior	0: Continuar a operação na frequência limite inferior1: Para a operação2: Continua a operação em velocidade 0	0	☆
Limite de tempo de inicialização	0h ~ 65000h	0h	☆
Limite de tempo de operação	0h ~ 65000h	0h	☆
Opção de recurso de proteção	0: Desabilitado 1: Habilitado	0	☆
Valor de detecção de frequência (FDT1)	0.00Hz ~ frequência máxima (F0-09)	50.00Hz	☆
	Tempo de desaceleração 2 Tempo de aceleração 3 Tempo de desaceleração 3 Tempo de desaceleração 4 Tempo de aceleração 4 Tempo de aceleração 4 Tempo de aceleração 1,2 ponto de frequência de comutação Tempo de desaceleração 1,2 ponto de frequência de comutação Prioridade de jog do terminal Avançar/retorno tempo morto Controle de reversão Ação quando a frequência de inferior Limite de tempo de inicialização Limite de tempo de operação Opção de recurso de proteção Valor de detecção de frequência	Tempo de desaceleração 2	desaceleração 20G pepende do modelo do inversor pepende do modelo do inversor Depende do Depende do Depende do Depende do modelo do inversor Depende do Depe

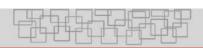

SIBRATEL

				ELETRONICA
Código	Nome	Faixa de ajuste	Padrão	Código
F9-19	Histerese na detecção de frequência (FDT1)	0.0% ~ 100.0% (nível de FDT1)	5.0%	☆
F9-20	Alcance de detecção de frequência alcançado	0.0% ~ 100.0% (frequência máxima F0-09)	0.0%	☆
F9-21	Valor de detecção de frequência (FDT2)	0.00Hz ~ frequência máxima	50.00Hz	☆
F9-22	Histerese na detecção de frequência (FDT2)	0.0% ~ 100.0% (nível de FDT2)	5.0%	☆
F9-23	Valor de detecção de frequência atingido arbitrário 1	0.00Hz ~ frequência máxima	50.00Hz	☆
F9-24	Largura de detecção de frequência alcançada arbitrária 1	0.0% ~ 100.0% (frequência máxima F0-09)	0.0%	☆
F9-25	Valor de detecção de frequência alcançado arbitrário 2	0.00Hz ~ frequência máxima	50.00Hz	☆
F9-26	Largura de detecção de frequência alcançada arbitrária 2	0.0% ~ 100.0% (frequência máxima F0-09)	0.0%	☆
F9-27	Nível de detecção de corrente zero	0.0% ~ 300.0% 100.0% correspondente à corrente nominal do motor	5.0%	☆
F9-28	Tempo de atraso de detecção de corrente zero	0.01s ~ 600.00s	0.10s	☆
F9-29	A corrente de saída excede o limite	0.0% (Sem detecção) 0.1% ~ 300.0% ((Corrente nominal do motor F3-02)	200.0%	☆
F9-30	Tempo de atraso de detecção de sobrecorrente de saída	0.00s ~ 600.00s	0.00s	☆
F9-31	Valor arbitrário 1 atingiu o atual	0.0% ~ 300.0% (Corrente nominal do motor F3-02)	100.0%	☆
F9-32	Valor arbitrário 1 atingiu a largura atual de	0.0% ~ 300.0% (Corrente nominal do motor F3-02)	0.0%	\$
F9-33	Valor arbitrário 2 atingiu o atual	0.0% ~ 300.0% (Corrente nominal do motor F3-02)	100.0%	☆
F9-34	Valor arbitrário 2 atingiu a largura atual de	0.0% ~ 300.0% (Corrente nominal do motor F3-02)	0.0%	☆

Código	Nome	Faixa de ajuste	Padrão	Código
F9-35	Opção de recurso de temporizador	0: Desabilitado 1: habilitado	0	*
	de temponzador	0: Valor do parâmetro F9-37 1: Entrada analógica AI1		
F9-36	Seleção de valor do temporizador	2: Entrada analógica AI2 (Pot.)	0	*
		Faixa de entrada analógica corresponde a F9-37		
F9-37	Seleção do tempo de contagem do temporizador	0.0Min ~ 6500.0 Min	0.0Min	*
F9-38	Temperatura limite do modulo	0°C~ 100°C	75°C	☆
F9-39	Limite de tempo de operação atual	0.0 ~ 6500.0 Min	0.0Min	*
F9-40	AI1 entrada de tensão	0.00V ~ F9-41	3.10V	☆
F9-41	Valor limite inferior de proteção	F9-40 ~ 10.00V	6.80V	☆
F9-42	AI1 entrada de tensão	0: Ventilador durante operação 1: Ventilador continua ligado	0	☆
F9-43	Valor limite superior de proteção	frequência de partida (F9-45) ~ frequência máxima(F0-09)	0.00Hz	☆
F9-44	Controle do ventilador	0.0s ~ 6500.0s	0.0s	☆
F9-45	frequência de partida	0.00Hz ~ Parâmetro (F9-43)	0.00Hz	☆
F9-46	Tempo para dar a partida	0.0s ~ 6500.0s	0.0s	☆
F9-47	Fator de potência de saída	0.0~200.0	100.0	☆
F9-48	Salto de frequência	0: Desabilitado	0	☆
. 5 . 5	·	1:Habilitado	•	7
F9-49	Salto de frequência	0.00Hz \sim frequência máxima (F0-09)	0.00Hz	☆
F9-50	Salto de frequência 2	0.00Hz \sim frequência máxima (F0-09)	0.00Hz	☆
F9-51	Range do salto de frequência	0.00Hz \sim frequência máxima (F0-09)	0.00Hz	☆

5.11. Grupo FA - Parâmetros do Teclado e do Display

Código	Nome	Nome Faixa de ajuste		Código
		0: QUICK/JOG desabilitado		
FA-00	tecla de função QUICK/JOG	1: Alternar entre o canal de comando do painel de operação e o canal de comando remoto (canal de comando do terminal ou canal de comando de comunicação) 2: Comutação direta e reversa	0	*
		3: Jog para frente (FWD)		
		4: Jog para Reverso (REV)		
FA-01	Tecla de função STOP/RST	0: Somente no modo de operação do teclado, a função de parada da tecla STOP/RST é habilitada 1: Em qualquer modo de operação, a função de parada da tecla STOP/RST é habilitada	1	*
		0000 ~ FFFF		
		Bit00: frequência de operação 1 (Hz)		☆
		Bit01: frequência de set-up (Hz)		
		Bit02: Tensão do barramento cc (V)		
		Bit03: Tensão de saída (V)	003F	
	Parâmetros de	Bit04: Corrente de saída (A)		
		Bit05: Potência de saída (kW)		
		Bit06: Valor do torque (%)		
FA-02	exibição de LED 1 para o modo de	Bit07: Status das entradas digitais		
	operação	Bit08: Status das saídas digitais		
		Bit09: Tensão da entrada analógica AI1		
		Bit10: Tensão da entrada analógica AI2		
		Bit11: Valor do contador		
		Bit12: Tamanho do contador		
		Bit13: Velocidade da carga		
		Bit14: Valor programado no PID		
		Bit15: feedback do PID		
		0000 ~ FFFF		
		Bit00: Estágio PLC		
		Bit01: Valor da frequência de entrada do terminal de pulso (kHz)		
	Parâmetros de	Bit02: frequência de operação 2 (Hz)		
FA-03	exibição de LED 2 para o modo de	Bit03: Tempo de operação restante	0000	☆
	operação	Bit04: Velocidade linear		
		Bit05: Tempo do inversor ligado (Hour)		
		Bit06: Tempo do inversor ligado (Min)		
		Bit07: Valor da frequência de entrada do terminal de pulso (Hz)		


-					ELETRONICA
Código	Nome		Faixa de ajuste	Padrão	Código
			valor definido pela porta de		
			icação set-up frequência principal (Hz)		
		Bit10:	Set-up de frequência auxiliar (Hz)		
		Bit11:	Valor de torque alvo		
		Bit12:	Ângulo do fator de potência		
		Bit13:	VF tensão alvo de separação (V)		
		Bit14:	VF tensão saída de separação (V)		
		Bit15:I	edback atual de velocidade (Hz)		
		0001~	-FFFF		
		Bit00:	frequência programada (Hz)		
		Bit01:	tensão do barramento CC (V)		
		Bit02:	Status das entradas digitais		
		Bit03:	Status das saídas digitais		
	Parâmetros de	Bit04:	Tensão da entrada analógica AI1		
FA-04	exibição de LED para o modo de	Bit05:	Tensão da entrada analógica AI2	0033	☆
	parada	Bit06:	Valor do contador		
		Bit07: Tamanho do contador			
		Bit08: Estágio PLC			
			Velocidade da carga		
		Bit10: Valor da frequência de entrada do			
			al de pulso (kHz)		
FA-05	Coeficiente de exibição da	0.0001	~ 6.5000	1.0000	☆
	velocidade de carga Temperatura do				
FA-06	dissipador de calor	0.0°C	~ 100.0°C	-	•
FA-07	Tempo de operação acumulativo	0h ~ 6	55535h	-	•
_		Digit			
		o de unida	Exibição da velocidade de carga U0-14 casas decimais		
		des	00-14 casas decimais		
		0	0 dígitos decimais		
		1	1 dígitos decimais		
EA 00	Velocidade de carga	2	2 dígitos decimais	21	
FA-08	exibição de casas decimais	3	3 dígitos decimais	21	☆
		Dígit	Velocidade de feedback U0-19,		
		o das deze	velocidade de feedback real U0-		
		nas	34 exibe casas decimais		
		1	1 casa decimal		
		2	2 casas decimais		
FA-09	Tempo de ligado	0 ~ 65	535h	-	•
L	acumulativo				

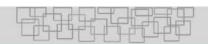
Código	Nome	Faixa de ajuste	Padrão	Código
FA-10	Potência total consumida	0 ~ 65535kW/h	-	•
FA-11	Código do produto	-	-	•
FA-12	Número da versão de software	-	-	•
FA-13	Versão do protocolo Modbus	-	-	•

5.12. Grupo FB - Parâmetros de Otimização de Controle

Código	Nome	Faixa de ajuste	Padrão	Código
FB-00	Limite superior da frequência de chaveamento DPWM	0.00Hz ~ 15.00Hz	12.00Hz	☆
FB-01	Método de modulação PWM	0: Modulação assíncrona	0	☆
1 D-01	PWM	1: Modulação síncrona	U	×
FB-02	PWM aleatório	0: PWM aleatório ativo 1 ~ 10: PWM nível da frequência aleatória da portadora	0	*
ED 02	modo de	0 : Desabilitado		
FB-03	compensação de zona morta	1 : Habilitado	1	☆
FB-04	Ajuste de tempo de zona morta (1140V Use)	100%~200%	150%	*
ED 0E	Ativação do limite	0 : Desabilitado	1	-A-
FB-05	onda	le corrente onda a 1 : Habilitado		☆
FB-06	Compensação de atraso de detecção de corrente	0~100	5	☆
FB-07	Set-up do valor de sub-tensão	Modelo monofásico: 140.0 ~ 400.0V Modelo trifásico: 200.0 ~ 2000.0V	Depende do modelo do inversor	*
FB-08	Set-up do valor de sobretensão	Modelo monofásico: 150.0 ~ 410.0V Modelo trifásico: 200.0 ~ 2500.0V	Depende do modelo do inversor	*
	Modo de	0 : Não otimizado		
FB-09	otimização SVC	1: Otimização modo 2	2	*
		2: Otimização modo 2		

5.13. Grupo FC - Parâmetros da Função PID

Código	Nome	Nome Faixa de ajuste		Código
		0: FC-01 setting		
		1: Entrada analógica AI1		
50.00	Referência do set-	2: Entrada analógica AI2(Pot)		
FC-00	point do PID	3: Entrada de pulso (DI5)	0	☆
		4: Porta de comunicação		
		5: Multi-speed		
FC-01	Valor de set-point do PID	0.0% ~ 100.0%	50.0%	☆
		0: Entrada analógica AI1		
FC-02	Entrada do feedback PID	1: Entrada de pulso (DI5)	0	☆
	leedback FID	2: Porta de comunicação		
F0.00	Direção de ação do	0: Sentido horário (FWD)		
FC-03	PID	1: Sentido anti-horário (REV)	0	☆
FC-04	PID range do set- point de feedback	0 ~ 65535	1000	☆
FC-05	Ganho proporcional Kp1	0.0 ~ 1000.0	20.0	☆
FC-06	Tempo de integração Ti1	0.01s ~ 10.00s	2.00s	☆
FC-07	Tempo diferencial Td1	0.000s ~ 10.000s	0.000s	☆
FC-08	frequência de corte reversa PID	0.00 ~ frequência máxima (F0-09)	2.00Hz	☆
FC-09	Limite de desvio PID	0.0% ~ 100.0%	0.0%	☆
FC-10	Limite diferencial PID	0.00% ~ 100.00%	0.10%	☆
FC-11	tempo de mudança de ponto de ajuste PID	0.00 ~ 650.00s	0.00s	☆
FC-12	Tempo de filtro do feedback PID	0.00 ~ 60.00s	0.00s	☆
FC-13	Tempo de filtro de saída PID	0.00 ~ 60.00s	0.00s	☆
FC-14	Reservado de fábrica			
FC-15	Ganho proporcional Kp2	0.0 ~ 100.0	20.0	☆
FC-16	Tempo integral Ti2	0.01s ~ 10.00s	2.00s	☆
FC-17	Tempo diferencial Td2	0.000s ~ 10.000s	0.000s	☆
	condições de	0: Nunca		
FC-18	comutação de parâmetros PID	1: Comutação via entradas digitais DI	0	☆
	parametros FID	2: Automaticamente de acordo com o desvio		
FC-19	desvio de	0.0% ~ FC-20	20.0%	☆



					ELETRONICA
Código	Nome	F	aixa de ajuste	Padrão	Código
	comutação1 de parâmetros PID				
FC-20	desvio de comutação2 de parâmetros PID 2	FC-19 ~ 100.	0%	80.0%	☆
FC-21	Valor inicial do PID	0.0% ~ 100.	0%	0.0%	☆
FC-22	Tempo de retenção do valor inicial PID	0.00 ~ 650.0	0s	0.00s	☆
FC-23	O desvio máximo entre duas saídas PID	0.00% ~ 100	0.00%	1.00%	☆
FC-24	O desvio mínimo entre duas saídas PID	0.00% ~ 100	0.00%	1.00%	☆
		Digito das unidades	Separação integral		¢
		0	invalido		
	Propriedades	1	Efetivo		
FC-25	integrais PID	Digito das dezenas	Se deve parar a integração após a saída atingir o limite	00	
		0	Continue		
		1	Para		
	PID detecção de	0.0%: Desab	ilitado	0.00/	
FC-26	perda de feedback	0.1% ~ 100.	0%	0.0%	☆
FC-27	PID tempo de detecção da perda do feedback	0.0s ~ 20.0s		0.0s	☆
FC-28	Modo de operação do PID	0: Nenhum inversor para1: Prossiga inversor para	a operação quando o	0	☆

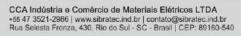
5.14. Grupo FD - Frequência de oscilação, comprimento fixo e parâmetros de contagem

Código	Nome	Faixa de ajuste	Padrão	Código
	Configuração de	0: Em relação à frequência central	_	
FD-00	frequência de oscilação	1: Em relação à frequência máxima	0	☆
FD-01	Amplitude da frequência de	0.0% ~ 100.0%	0.0%	☆
FD-02	oscilação Amplitude de frequência de kick	0.0% ~ 50.0%	0.0%	☆
FD-03	Período de frequência de oscilação	0.1s ~ 3000.0s	10.0s	☆
FD-04	Tempo de subida da onda triangular da frequência de oscilação	0.1% ~ 100.0%	50.0%	☆
FD-05	Definir comprimento	0m ~ 65535m	1000m	☆
FD-06	Comprimento atual	0m ~ 65535m	0m	☆
FD-07	Número de pulsos por metro	0.1 ~ 6553.5	100.0	☆
FD-08	Valor de contagem	1 ~ 65535	1000	☆
FD-09	Valor de contagem designado	1 ~ 65535	1000	☆

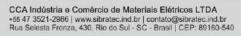
5.15. Grupo FE - Instrução multi-segmentos, parâmetros do CLP

simples

Código	Nome	F	aixa de ajuste	Padrão	Código
FE-00	Comando de vários segmentos 0	-100.0% ~ 1	00.0%	0.0%	☆
FE-01	Comando de vários segmentos 1	-100.0% ~ 1	00.0%	0.0%	☆
FE-02	Comando de vários segmentos 2	-100.0% ~ 1	00.0%	0.0%	☆
FE-03	Comando de vários segmentos 3	-100.0% ~ 1	00.0%	0.0%	☆
FE-04	Comando de vários segmentos 4	-100.0% ~ 1	00.0%	0.0%	☆
FE-05	Comando de vários segmentos 5	-100.0% ~ 1	00.0%	0.0%	☆
FE-06	Comando de vários segmentos 6	-100.0% ~ 1	00.0%	0.0%	☆
FE-07	Comando de vários segmentos 7	-100.0% ~ 1	00.0%	0.0%	☆
FE-08	Comando de vários segmentos 8	-100.0% ~ 1	00.0%	0.0%	☆
FE-09	Comando de vários segmentos 9	-100.0% ~ 1	00.0%	0.0%	*
FE-10	Comando de vários segmentos 10	-100.0% ~ 1	00.0%	0.0%	☆
FE-11	Comando de vários segmentos 11	-100.0% ~ 1	00.0%	0.0%	☆
FE-12	Comando de vários segmentos 12	-100.0% ~ 1	00.0%	0.0%	☆
FE-13	Comando de vários segmentos 13	-100.0% ~ 1	00.0%	0.0%	☆
FE-14	Comando de vários segmentos 14	-100.0% ~ 1	00.0%	0.0%	☆
FE-15	Comando de vários segmentos 15	-100.0% ~ 1	00.0%	0.0%	☆
FE-16	Modo de operação do CLP	1: Pare no fi e mantenha	0: Parar no final de uma única operação 1: Pare no final de uma única operação e mantenha o valor final 2: Repetir operação		☆
		Digito das unidades	Opção de salva ou não ao desligar o CLP Não salva		
	Retenção de	1	Salva		
FE-17	memória ao desligar o PLC	Digito das dezenas	Opção de salva ou não ao desligar o CLP	00	☆
		0	Não salva		
		1	Salva		
FE-18	CLP: seleção de tempo de execução	0.0s(h) ~ 65	53.5s(h)	0.0s(h)	☆



				ELETRONICA
Código	Nome	Faixa de ajuste	Padrão	Código
	do segmento 0			
FE-19	CLP: Seção 0 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	
FE-20	CLP: seleção de tempo de execução do segmento 1	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-21	CLP: Seção 1 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	☆
FE-22	CLP: seleção de tempo de execução do segmento 2	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-23	CLP: Seção 2 seleções de tempo de aceleração e desaceleração	0 ~ 3	0	☆
FE-24	CLP: seleção de tempo de execução do segmento 3	0.0s(h) ~ 6553.5s(h)	0.0s(h)	*
FE-25	CLP: Seção 3 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	አ
FE-26	CLP: seleção de tempo de execução do segmento 4	0.0s(h) ~ 6553.5s(h)	0.0s(h)	¥
FE-27	CLP: Seção 4 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	☆
FE-28	CLP: seleção de tempo de execução do segmento 5	0.0s(h) ~ 6553.5s(h)	0.0s(h)	¥
FE-29	CLP: Seção 5 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	አ
FE-30	CLP: seleção de tempo de execução do segmento 6	0.0s(h) ~ 6553.5s(h)	0.0s(h)	兹
FE-31	CLP: Seção 6 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	አ
FE-32	CLP: seleção de tempo de execução do segmento 7	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-33	CLP: Seção 7 seleção de tempo de aceleração e	0 ~ 3	0	☆



-				ELETRONICA
Código	Nome	Faixa de ajuste	Padrão	Código
	desaceleração			
FE-34	CLP: seleção de tempo de execução do segmento 8	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-35	CLP: Seção 8 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	☆
FE-36	CLP: seleção de tempo de execução do segmento 9	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-37	CLP: Seção 9 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	☆
FE-38	CLP: seleção de tempo de execução do segmento 10	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-39	CLP: Seção 10 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	☆
FE-40	CLP: seleção de tempo de execução do segmento 11	0.0s(h) ~ 6553.5s(h)	0.0s(h)	ጵ
FE-41	CLP: Seção 11 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	¥
FE-42	CLP: seleção de tempo de execução do segmento 12	0.0s(h) ~ 6553.5s(h)	0.0s(h)	ά
FE-43	CLP: Seção 12 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	ቱ
FE-44	CLP: seleção de tempo de execução do segmento 13	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-45	CLP: Seção 13 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	¥
FE-46	CLP: seleção de tempo de execução do segmento 14	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-47	CLP: Seção 14 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	¥
FE-48	CLP: seleção de tempo de execução do segmento 15	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆

Código	Nome	Faixa de ajuste	Padrão	Código
FE-49	CLP: Seção 15 seleção de tempo de aceleração e desaceleração	0 ~ 3	0	☆
FE-50	unidade de tempo de operação do CLP	0: s (segundos)	0	☆
	de operação do CLP	1: h (horas)		
		0: Parâmetro FE-00		
		1: Entrada analógica AI1		
	Comando	2: Entrada analógica AI2(Pot.)		
FE-51	multissegmento 0	3: Entrada de pulso DI5	0	☆
	opções de ponto de ajuste	4: PID		
		5: Definido pela frequência predefinida		
		(F0-01) e ajustável usando as teclas UP/DOWN		

5.16. Grupo FF - Parâmetros de Gerenciamento

Código	Nome	Faixa de ajuste	Padrão	Código
FF-00	Senha de usuário	0 ~ 65535	0	☆
FF-01	Resetar parâmetros	O: Sem função 1: Restaurar os parâmetros aos valores de fábrica, exceto os parâmetros do motor 2: Limpar dados gravados 4: Parâmetros atuais do usuário de backup 5: Restaurar para os parâmetros de backup do usuário	0	*
FF-02	Opções de exibição do conjunto de parâmetros de função	Dígito das Unidades: exibição do conjunto U 0: Desabilitado 1: Habilitado Dígito das dezenas: exibição do conjunto P 0: Desabilitado 1: Habilitado	11	☆
FF-03	Seleção de exibição do conjunto de parâmetros personalizado	Dígito das unidades: Exibição do conjunto de parâmetros definido pelo usuário 0: Desabilitado 1: Habilitado Dígito das dezenas: Exibição do conjunto de parâmetros definido pelo usuário 0: Desabilitado 1: Habilitado	00	☆
FF-04	Proteção aos parâmetros	0: Os parâmetros podem ser modificados 1: Somente este parâmetro pode ser modificado	0	☆



5.17. Grupo PO - Parâmetros da Comunicação Serial

Código	Nome	Faixa de ajuste	Padrão	Código
		0: 300BPS		
		1: 600BPS		
		2: 1200BPS		
		3: 2400BPS		
DO 00	Taxa de	4: 4800BPS	_	*
P0-00	transmissão (Baud rate)	5: 9600BPS	5	
	,	6: 19200BPS		
		7: 38400BPS		
		8: 57600BPS		
		9: 115200BPS		
		0: Sem paridade (8-N-2)		
DO 04		1: Paridade par (8-E-1)		
P0-01	Formato dos dados	2: Paridade ímpar (8-0-1)	0	☆
		3: Sem paridade (8-N-1)		
DO 00		0 : Endereço de transmissão	1 ☆	
P0-02	Endereço	1 ~ 247		☆
P0-03	Tempo de resposta	0 ~ 20ms	2	☆
	Tempo limite da	0.0: Inválido	_	
P0-04	comunicação	0.1 ~ 60.0s	0	☆
P0-05	Formato de dados	0: Protocolo MODBUS não padrão	1	A-
PU-U5	MODBUS	1: Protocolo MODBUS padrão	1	☆
P0-06	Resolução atual da	0: 0.01A	0	
PU-00	leitura de corrente	1: 0.1A		☆

5.18. Grupo P2 - Parâmetros de calibração da entradas e saídas analógicas

Código	Nome	Faixa de ajuste	Padrão	Código
P2-00	AI1 sentido da curva de tensão 1	0.500V~4.000V	Calibração de fábrica	☆
P2-01	AI1 tensão medida 1	0.500V~4.000V	Calibração de fábrica	☆
P2-02	AI1 sentido da curva de tensão 2	6.000V~9.999V	Calibração de fábrica	☆
P2-03	AI1 tensão medida 2	6.000V~9.999V	Calibração de fábrica	☆
P2-04	AI2 sentido da curva de tensão 1	0.500V~4.000V	Calibração de fábrica	☆
P2-05	AI2 tensão medida 1	0.500V~4.000V	Calibração de fábrica	☆
P2-06	AI2 sentido da curva de tensão 2	6.000V~9.999V	Calibração de fábrica	☆
P2-07	AI2 tensão medida 2	6.000V~9.999V	Calibração de fábrica	☆
P2-08	AO1 tensão programada 1	0.500V~4.000V	Calibração de fábrica	☆
P2-09	AO1 tensão medida 1	0.500V~4.000V	Calibração de fábrica	☆
P2-10	AO1 tensão programada 2	6.000V∼9.999V	Calibração de fábrica	☆
P2-11	AO1 tensão medida 2	6.000V~9.999V	Calibração de fábrica	☆

5.19. Grupo P3 - Parâmetros de configuração de curva da entrada

analógica

Código	Nome	Faixa de ajuste	Padrão	Código
P3-00	AI1 Ponto de salto	-100.0% ~ 100.0%	0.0%	☆
P3-01	AI1 alcance de salto	0.0% ~ 100.0%	0.5%	☆
P3-02	AI2 ponto de salto	-100.0% ~ 100.0%	0.0%	☆
P3-03	AI2 Alcance do salto	0.0% ~ 100.0%	0.5%	☆
P3-04	AI entrada mínima da curva 3	0.00V~P3-06	0.00V	☆
P3-05	AI entrada mínima da curva 3 correspondentes ao programado	-100.0%~+100.0%	0.0%	☆
P3-06	Configuração da curva AI de 3 pontos de inflexão e 1 valor de entrada	P3-04~P3-08	2.00V	☆
P3-07	Configuração da curva AI de 3 pontos de inflexão e 1 configuração de valor de entrada	-100.0%~+100.0%	20.0%	☆
P3-08	Configuração da curva AI de 3 pontos de inflexão e 2 valores de entrada	P3-06~P3-10	4.00V	☆
P3-09	Configuração da curva AI de 3 pontos de inflexão e configuração de 2 valores de entrada	-100.0%~+100.0%	40.0%	☆
P3-10	Configuração da curva AI de 3 pontos de inflexão e 3 valores de entrada	P3-08~P3-12	6.00V	☆
P3-11	Configuração da curva AI de 3 pontos de inflexão e configuração de 3 valores de entrada	-100.0%~+100.0%	60.0%	☆
P3-12	Configuração da curva AI de 3 pontos de inflexão e 4 valores de	P3-10~P3-14	8.00V	☆

Código	Nome	Faixa de ajuste	Padrão	Código
	entrada			
P3-13	Configuração de curva AI de 3 pontos de inflexão e configuração de 4 valores de entrada	-100.0%~+100.0%	80.0%	☆
P3-14	Curva de AI entrada máxima 3	P3-12~+10.00V	10.00V	☆
P3-15	Curva de AI entrada máxima 3 configurações correspondente	-100.0%~+100.0%	100.0%	☆

5.20. Grupo P4 - Parâmetros de código de função definidos pelo

usuário

Código	Nome	Faixa de ajuste	Padrão	Código
P4-00	Código de função definido pelo usuário 0		F0.10	☆
P4-01	Código de função definido pelo usuário 1		F0.02	☆
P4-02	Código de função definido pelo usuário 2		F0.03	☆
P4-03	Código de função definido pelo usuário 3		F0.07	☆
P4-04	Código de função definido pelo usuário 4		F0.08	☆
P4-05	Código de função definido pelo usuário 5		F0.17	☆
P4-06	Código de função definido pelo usuário 6		F0.18	☆
P4-07	Código de função definido pelo usuário 7	F0-00 ~ FF-xx P0-00 ~ Px-xx	F3.00	☆
P4-08	Código de função definido pelo usuário 8	U0-00 ~ U0-xx	F3.01	☆
P4-09	Código de função definido pelo usuário 9		F4.00	☆
P4-10	Código de função definido pelo usuário 10		F4.01	*
P4-11	Código de função definido pelo usuário 11		F4.02	☆
P4-12	Código de função definido pelo usuário 12		F5.04	☆
P4-13	Código de função definido pelo usuário 13		F5.07	☆
P4-14	Código de função definido pelo usuário 14		F6.00	☆
P4-15	Código de função definido pelo usuário 15		F6.01	☆

				ELETRONICA
Código	Nome	Faixa de ajuste	Padrão	Código
P4-16	Código de função definido pelo usuário 16		F6.02	☆
P4-17	Código de função definido pelo usuário 17		F6.03	☆
P4-18	Código de função definido pelo usuário 18		F7.00	☆
P4-19	Código de função definido pelo usuário 19		F7.01	☆
P4-20	Código de função definido pelo usuário 20		F7.02	\$
P4-21	Código de função definido pelo usuário 21		F7.03	¢
P4-22	Código de função definido pelo usuário 22		FA.00	☆
P4-23	Código de função definido pelo usuário 23		F0.00	☆
P4-24	Código de função definido pelo usuário 24		F0.00	☆
P4-25	Código de função definido pelo usuário 25		F0.00	☆
P4-26	Código de função definido pelo usuário 26		F0.00	☆
P4-27	Código de função definido pelo usuário 27		F0.00	☆
P4-28	Código de função definido pelo usuário 28		F0.00	☆
P4-29	Código de função definido pelo usuário 29		F0.00	*
P4-30	Código de função definido pelo usuário 30		F0.00	*
P4-31	Código de função definido pelo usuário 31		F0.00	☆

5.21. Grupo U0 - Parâmetros de Monitoração

Código	Nome	Faixa de ajuste	Padrão
U0-00	Frequência de operação (Hz)	0.01Hz	7000H
U0-01	Frequência programada (Hz)	0.01Hz	7001H
U0-02	Tensão do barramento CC (V)	0.1V	7002H
U0-03	Tensão de saída (V)	1V	7003H
U0-04	Corrente de saída (A)	0.01A	7004H
U0-05	Potência de saída (kW)	0.1kW	7005H
U0-06	Torque de saída (%)	0.10%	7006H
U0-07	Status das entradas digitais	1	7007H
U0-08	Status das saídas digitais	1	7008H
U0-09	Tensão da entrada analógica AI1	0.01V	7009H
U0-10	Tensão da entrada analógica AI2	0.01V	700AH
U0-11	Valor do contador	1	700BH
U0-12	Tamanho do contador	1	700CH
U0-13	Exibição de velocidade de carga	0.1	700DH
U0-14	Valor programado do PID	1	700EH
U0-15	Feedback do PID	1	700FH
U0-16	Estágio do CLP	1	7010H
U0-17	frequência do pulso de entrada (Hz)	0.01kHz	7011H
U0-18	Velocidade do feedback (Hz)	0.1Hz	7012H
U0-19	Tempo de execução restante	0.1Min	7013H
U0-20	Velocidade da linha	1m/Min	7014H
U0-21	Tempo de ativação atual	1Min	7015H
U0-22	Tempo de execução atual	0.1Min	7016H
U0-23	frequência da entrada de pulso	1Hz	7017H
U0-24	Configurações de comunicação	0.01%	7018H
U0-25	Status de execução do inversor	0.01Hz	7019H
U0-26	frequência principal	0.01Hz	701AH
U0-27	frequência auxiliar	0.01Hz	701BH
U0-28	Torque alvo (%)	0.10%	701CH
U0-29	Ângulo do fator de potência	0.1°	701DH
U0-30	Tensão alvo de separação VF	1V	701EH
U0-31	Tensão de saída de separação VF	1V	701FH
U0-32	Coeficiente de oscilação VF		7020H
U0-33	Temperatura	1°C	7021H
U0-34	Velocidade de resposta real (Hz)	0.1Hz	7022H
U0-35	Detalhes do acidente		7023H
U0-40	Status das entradas digitais apresentado no display		7028H

SI	BRATEC	ELETRÔNICA
U0-41	Status das Saídas digitais apresentado no display	7029H
U0-42	Status das funções das entradas digitais apresentado no display 1	 702AH
U0-43	Status das funções das entradas digitais apresentado no display 2	 702BH
U0-59		

Detailed function description (Descrição detalhada das funções) - Inglês

6.1. FO (Basic function)

Code	Name	Range	Default	Modification
F0-00	First motor control method	O: Speed sensor less vector control (SVC) 1: V/F control	0	*

^{0:} SVC open-loop vector control, suitable for high-performance control occasions, one inverter can only drive one motor at the same time, and self-learning must be performed before the first operation. motor parameter settings)

1: V/F control: It is suitable for applications where the control accuracy is not high, or where one inverter drives multiple motors. Self-learning is recommended before the first run.

Code	Name	Range	Default	Modification
F0-01	Preset frequency	0.00Hz ~ Max. frequency (F0-09)	50.00Hz	☆

When the frequency source is "digital setting frequency", the function code value is the initial value of the frequency digital setting of the inverter, and its maximum value cannot exceed the maximum frequency F0-09.

Code	Name	Range	Default	Modification
F0-02	Main frequency source X selection	0: Digital setting (preset frequency F0-01, UP/DOWN modifiable, data loss when power off) 1: Digital setting (preset frequency F0-02, UP/DOWN modifiable, data loss when power off) 2: AI1 3: AI2 (rotary potentiometer) 4: PULSE pulse setting (DI5) 5: Multiple instructions 6: Simple PLC 7: PID 8: Communication setting	0	*

Select the input channel of the main given frequency of the inverter. There are 9 main reference frequency channels:

0: Digital setting (preset frequency F0-01, UP/DOWN can be modified, no memory after power failure)
After power on, set the frequency to the frequency set by F0-01. You can adjust the frequency by pressing the UP or DOWN button. After shutdown or power-off and power-on again, the set frequency will return to the preset frequency of F0-01. (UP/DOWN keys will not modify the value of F0-01)

1: Digital setting (preset frequency F0-01, UP/DOWN can be modified, power-down memory)

After power on, set the frequency to the frequency set by F0-01. You can adjust the frequency by pressing the UP or DOWN button. When the machine is stopped or powered off and powered on again, F0-01 is saved as the modified value.

2: AI1

The frequency is given through the AI1 terminal, the AI maximum value corresponds to the maximum frequency F0-09, and the AI terminal related settings refer to the explanation of the F6 group function code. AI1 terminal can select voltage type input or current type input through jumper J13, generally 2~10V/4~20mA is the effective range.

3: AI2 (rotary potentiometer)

The frequency is given by the knob on the key board, the AI maximum value corresponds to the maximum frequency F0-09, and the AI terminal related settings refer to the explanation of the F6 group function code. AI2 (the knob on the keyboard) is the largest when it is turned clockWise to the far right, and the smallest when it is turned counterclockWise to the far left.

4: PULSE pulse setting (DI5)

The frequency is given through the high-speed DI terminal. The high-speed DI terminal is the high-speed pulse input terminal. The voltage range is 10~30Vpeak, and the frequency range is 0KHz~100KHz. The maximum input setting of high-speed pulse F6-29 corresponds to the maximum frequency F0-09. For the related settings of DI terminal, please refer to the explanation of the function code of group F6.

5: Multi-segment instruction

Different state combinations of digital input DI terminals are required to correspond to different set frequency values. It needs to cooperate with the F6 group function code to set the combination state of the DI input terminals. At most 4 DI terminals can be controlled to select a total of 16 corresponding segments from 00 to 15 in the FE group in binary form. The percentage of the setting range in the FE group is the setting value corresponding to the maximum frequency F0-09. When 100%, the frequency is equal to the setting value of F0-09.

6: Simple PLC

The frequency source is the automatic operation of the PLC group function code preset logic, and its operation logic corresponds to the set operating frequency, acceleration and deceleration time and holding time of the FE group 16~50.

7: PID

Select the output of the process PID control as the operating frequency. Generally used for on-site process closed-loop control, such as constant pressure closed-loop control, constant tension closed-loop control and other occasions.

According to the PID group settings, the closed-loop feedback automatically controls the running frequency. For detailed settings, please refer to the PID function explanation of the FC group.

8: Communication given

It can be given by MODBUS. For MODBUS related communication settings, please refer to the explanation of the communication parameters of group P0.

Code	Name	Range	Default	Modification
F0-03	Main frequency source X selection	0: Digital setting (preset frequency F0- 01, UP/DOWN modifiable, data loss when power off)	0	*

SIBRATEC		ELETRÓNICA
	1: Digital setting (preset frequency F0-02, UP/DOWN modifiable, data loss when power off)	
	2: AI1 3: AI2 (rotary potentiometer) 4: PULSE pulse setting (DI5)	
	5: Multiple instructions	
	6: Simple PLC 7: PID	
	8: Communication setting	

When the auxiliary frequency source is used as an independent operation frequency (only used for switching between frequency source X and Y), the usage method is the same as that of the main frequency source X, and you can refer to the description of F0-02.

When the auxiliary frequency source is used as the superposition operation frequency (the ones digit in F0-06 is not 0):

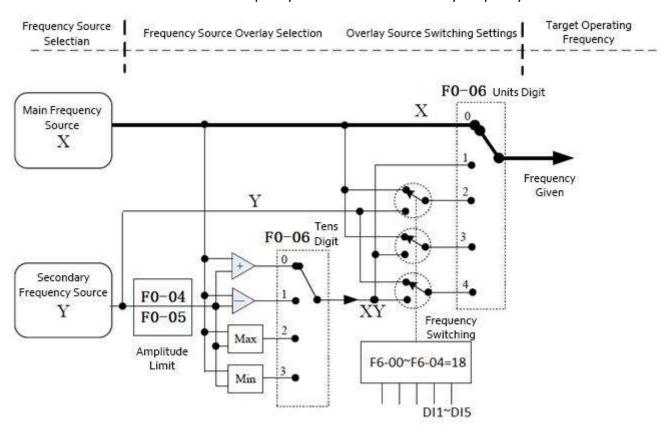
- 1. The main frequency source X selection F0-02 and the auxiliary frequency source Y selection F0-03 cannot be set to the same channel (same value) to avoid confusion in the calculation.
- 2. When the auxiliary frequency source is set to digital setting, the preset frequency F0-01 cannot take effect directly. You can use the UP or DOWN key (DI is set to the corresponding function of the UP or DOWN key) directly on the basis of the set main frequency. adjust up.

Code	Name	Range	Default	Modification
F0-04	Y range selection of auxiliary frequency source during superposition	O: Relative to the maximum frequency 1: Relative to frequency source X	0	☆
F0-05	Y range of auxiliary frequency source when superposition	0% ~ 150%	0%	☆

When the frequency source is selected as "frequency superposition", these two parameters are used to determine the adjustment range of the auxiliary frequency source.

F0-05 is used to determine the object corresponding to the auxiliary frequency source range. It can be selected relative to the maximum frequency or relative to the main frequency source X. If it is selected to be relative to the main frequency source, the range of the auxiliary frequency source will follow the main frequency source. changes with the frequency source.

This value is used to limit the frequency upper limit during superposition operation = $F0-04 \times F0-05$


Code	Name	Range	Default	Modification
		Units digit: Frequency source selection 0: Main frequency source X		
F0-06	Frequency source superposition selection	1: Result of Main and auxiliary calculation (the algorithm used here is determined by the tenth digit) 2: Switch between main frequency source X and auxiliary frequency source Y	00	☆

3: Switch between main frequency source X and result of main and auxiliary calculation results	SIBRATEC		ELETRÔNICA
4: Switch between auxiliary frequency source Y and result of main and auxiliary calculation Tens digit: Algorithm of main and auxiliary frequency source calculation 0: Main + Auxiliary 1: Main—Auxiliary 2: The bigger one of the two 3: The smaller one of the two		source X and result of main and auxiliary calculation results 4: Switch between auxiliary frequency source Y and result of main and auxiliary calculation Tens digit: Algorithm of main and auxiliary frequency source calculation 0: Main + Auxiliary 1: Main—Auxiliary 2: The bigger one of the two	

Use this parameter to select the frequency given channel. The frequency reference is realized by the combination of the main frequency source X and the auxiliary frequency source Y.

Ones place: B in AB, used to select the setting source of the output target frequency

- 0: The output target frequency setting value comes from the main frequency source X, F0-02
- 1: The output frequency setting value is calculated from the calculation method set by the ten digit (A in AB) in this function code.
- 2: Set one of the DI terminals as "frequency source switching" through the F6 group function code. When this DI terminal is invalid, the output frequency is set as the main frequency source X, and when it is valid, the output frequency is set as the auxiliary frequency Y.
- 3: Through the F6 group function code, set one of the DI terminals as "frequency source switching". When this

DI terminal is invalid, the output frequency is set as the main frequency source X, and when it is valid, the output frequency is set due to the ten digits in this function code (A) in AB is calculated by the calculation method set.

4: Set one of the DI terminals as "frequency source switching" through the F6 group function code. When this DI terminal is invalid, the output frequency is set to auxiliary frequency Y. When it is valid, the output frequency is set due to the ten digit (AB) in this function code. Calculated by the calculation method set in A).

Tens place: A in AB, used to select the calculation method of the superposition operation of the main frequency source and the auxiliary frequency source.

- 0: Main frequency source X + auxiliary frequency Y, for example X=2, Y=1, the calculation result is 3.
- 1: Main frequency frequency source X auxiliary frequency Y, for example X=2, Y=1, the calculation result is 1.
- 2: The main frequency frequency source X and the auxiliary frequency Y take the larger value, for example, X=2, Y=1, the calculation result is 2.
- 3: The main frequency source X and the auxiliary frequency Y take the smaller value, for example X=2, Y=1, the calculation result is 1.

Code	Name	Range	Default	Modification
F0-07	Frequency digital setting memory after shutdown	0:dumped ; 1:saved	0	☆

When F0-07 is set to "Do not memorize", the frequency can be adjusted by pressing the UP or DOWN button after power-on, the inverter cannot memorize the adjusted frequency, and the set frequency will still be the preset frequency of F0-01 at the next power-on.

When F0-07 is set to "Memorize", the inverter can memorize the adjusted frequency, and the set frequency at the next startup is the frequency adjusted by UP/DOWN before power off.

This function is only applicable when the frequency source is digitally set.

Code	Name	Range	Default	Modification
F0 00	Operation direction	0: Default direction (FWD/REV indicator off)	0	٨
F0-08	selection	1: Opposite of the default direction (FWD/REV indicator always on)	U	☆

By changing this function code, the purpose of changing the direction of the motor can be achieved without changing the wiring of the motor. Its function is equivalent to adjusting any two lines of the motor (U, V, W) to realize the conversion of the rotation direction of the motor.

Tip: After the parameters are initialized, the running direction of the motor will be restored to the original state. It is strictly forbidden to change the direction of the motor after the system is debugged.

Use with caution.

Code	Name	Range	Default	Modification
F0-09	Maximum	50.00Hz ~ 500.00Hz	50.00Hz	+
1 0-09	frequency	30.00112 7 300.00112	30.0002	×

To avoid equipment failure, the maximum frequency limit needs to be set according to the actual application requirements. When AI, high-speed DI, multi-segment commands and other functions are used as frequency sources, 100% of them correspond to this value.

Code	Name	Range	Default	Modification
F0-10	Upper limit	0: F0-11 setting	0	+

SIBRATEC		ELETRÔNICA
frequency source	1: AI1	
	2: AI2 (Rotary potentiometer)	
	3: PULSE pulse setting	
	4: Communication setting	

Defines the source of the capped frequency. The upper limit frequency can come from digital setting (F0-11), or from analog input setting, PULSE pulse setting or communication setting. When using analog input setting, PULSE pulse setting or communication setting, please refer to the explanation in F0-02.

For example, when the torque control method is adopted in the control site, in order to avoid the phenomenon of "flying car" caused by material disconnection, the upper limit frequency can be set by analog quantity. When the inverter runs to the upper limit frequency value, the inverter keeps running at the upper limit frequency. .

Code	Name	Range	Default	Modification
F0-11	Upper frequency	Lower limit frequency F0-12 ~ Maximum frequency F0-09	50.00Hz	☆

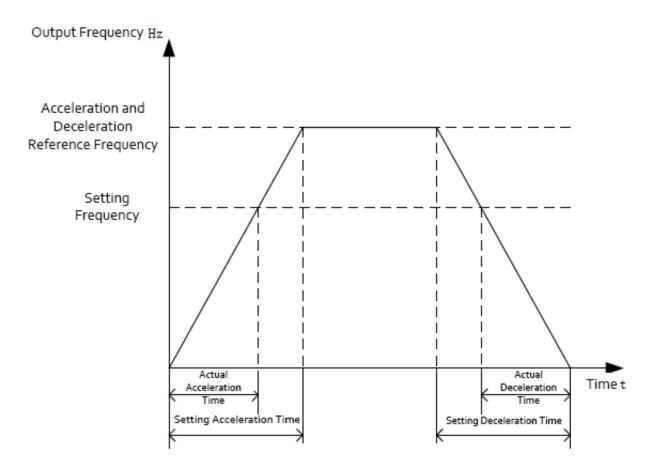
Set the upper limit frequency limit during running, the minimum value is the lower limit frequency F0-12, and the maximum value is the maximum frequency F0-09.

Code	Name	Range	Default	Modification
F0-12	Lower limit	0.00Hz ~ Upper limit frequency F0-11	0.00Hz	}
10-12	frequency	0.00112 70 Opper littlic frequency 10-11	0.00112	☆

Set the lower limit frequency limit during operation, and the maximum value cannot exceed the upper limit frequency F0-11.

Code	Name	Range	Default	Modification
		0.00s ~ 650.00s(F0-15=2)	Model determination	☆
F0-13	Acceleration time 1	0.0s ~ 6500.0s(F0-15=1)		
		0s ~ 65000s(F0-15=0)		
		0.00s ~ 650.00s(F0-15=2)		
F0-14	Deceleration time 1	0.0s ~ 6500.0s(F0-15=1)	Model - determination	☆
		0s ~ 65000s(F0-15=0)		

Acceleration time: the time for the inverter-driven motor to accelerate from 0Hz to the reference frequency of acceleration and deceleration time F0-16. Acceleration and deceleration time precision F0-15 can adjust its corresponding precision.


Deceleration time: the time for the inverter to drive the motor to decelerate from the reference frequency F0-16 of the acceleration and deceleration time to 0Hz. Acceleration and deceleration time precision F0-15 can adjust its corresponding precision. As shown below.

Code	Name	Range	Default	Modification
	Acceleration and	0: 1s		
F0-15	deceleration time	1: 0.1s	1	*
	unit	2: 0.01s		

In order to meet different applications, the unit is divided into 1s, 0.1s, 0.01s. When this setting is modified, the decimal places of the acceleration and deceleration time 1/2/3/4 of F0-13/14 and F9-03~08 will change. , the acceleration and deceleration time will also be changed, it needs to be checked and confirmed, and it needs to be reset if necessary.

Code	Name	Range	Default	Modification
	Base frequency of	0: Maximum frequency (F0-09)		
F0-16	acceleration and	1: Set frequency (F0-01)	0	*
	deceleration time	2: 100Hz		

Maximum frequency: Refers to the time required for the acceleration and deceleration time base of the inverter to change from 0Hz to F0-09 or from F0-09 to 0Hz. The actual deceleration time needs to be proportional to the current running frequency and F0-09.

Set frequency: It refers to the time required for the acceleration and deceleration time base of the inverter to change from: acceleration from 0Hz to F0-01 or deceleration from F0-01 to 0Hz. The actual deceleration time needs to be proportional to the current running frequency and F0-01.

100Hz: Refers to the time required for the acceleration and deceleration time base of the inverter to change

from: acceleration from 0Hz to 100Hz or deceleration from 100Hz to 0Hz. The actual deceleration time needs to be proportional to the current operating frequency and 100Hz.

Code	Name	Range	Default	Modification
F0-18	Carrier frequency	0.8kHz ~ 8.0kHz	Model determination	☆

This function adjusts the carrier frequency of the inverter. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the leakage current of the line can be reduced, and the interference generated by the inverter can be reduced. When the carrier frequency is low, the higher harmonic components of the output current increase, the loss of the motor increases, and the temperature rise of the motor increases. When the carrier frequency is high, the motor loss decreases and the motor temperature rise decreases, but the inverter loss increases, the inverter temperature rise increases, and the interference increases. Adjusting the carrier frequency affects the following performance:

carrier frequency	$low \rightarrow high$
Motor noise	big → small
Output current waveform	bad → good
Motor temperature rise	$high \rightarrow low$
Inverter temperature rise	$low \rightarrow high$
leakage current	$ $ small \rightarrow large
External Radiation Interference	small → large

The factory setting of carrier frequency is different for inverters of different power. Although the user can modify it according to the needs, it should be noted that if the carrier frequency is set higher than the factory value, it will cause the temperature rise of the inverter radiator to increase. At this time, the user needs to derate the inverter, otherwise the inverter will have an overheating alarm. Danger.

Code	Name	Range	Default	Modification
F0-19	Temperature based adjustment for carrier frequency	 Disable Enable (carrier frequency lower limit 1 KHz) Enable (carrier frequency lower limit 2 KHz) Enable (carrier frequency lower limit 3 KHz) Enable (carrier frequency lower limit 4 KHz) 	1	☆

The carrier frequency is adjusted with the temperature, which means that when the inverter detects that the temperature of its own cooling system is high, it intelligently adjusts the carrier frequency to reduce the loss and reduce the temperature, so as to avoid over-temperature causing shutdown or fault alarm. When the temperature of the cooling system drops, the carrier frequency will be adjusted back to the set value of the carrier frequency F0-18.

Code	Name	Range	Default	Modification
		Units digit: Operation panel command binding frequency source selection		
	Command source	0: No binding		
F0-20	bundling frequency	1: Digital setting frequency	0	☆
	source	2: AI1		
		3: AI2 (rotary potentiometer)		
		4: PULSE pulse setting (DI5)		

SIBRATEC		ELETRÔNICA
	5: Multi-speed	
	6: Simple PLC	
	7: PID	
	8: Communication setting	
	Tens digit: Terminal command binding frequency source selection (As same as the units digit)	
	Hundreds digit: Communication command binding frequency source selection (As same as the units digit)	

Different frequency setting sources can be set for the three command channels (ON/OFF function control source) of operation panel, terminal and communication.

The meaning of the command source is the same as that of F0-02, please refer to the function explanation of F0-02.

Three command sources can be bound to the same frequency source.

When the command source is bundled with the frequency source, and the command source is valid, the setting content of F0-02~06 will be invalid.

Code	Name	Range	Default	Modification
F0-21	F0-21 Command source selection	O: Operation panel command channel (LED off) Terminal command channel (LED on)	0	☆
	Selection	2: Communication command channel (LED flashing)		

Select the command source to be given by the keypad, and the "LOCAL/REMOT" light is off at this time.

Select the command source as the function terminal, and the "LOCAL/REMOT" light is always on.

Select the command source as communication given, and the "LOCAL/REMOT" light is flashing at this time.

Code	Name	Range	Default	Modification
F0 33 65 11 1	1: G type (constant torque load)	Model	_	
FU-22	0-22 GP type display	2: P type (air blower, pump load)	determination	•

G-type machine is suitable for machine tools, cranes, centrifuges, injection molding machines, elevators and other equipment. The overload capacity is: 150% rated current 60s, 180% rated current 3s.

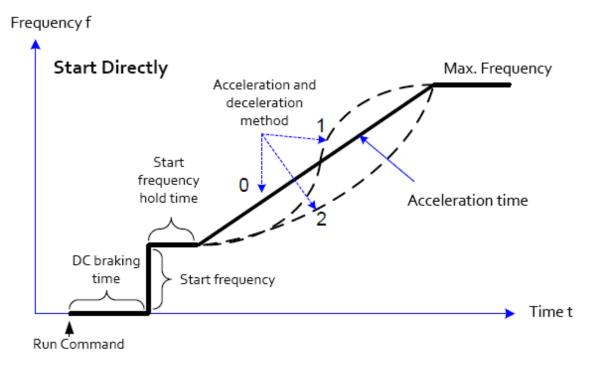
P-type machine, suitable for fans, pumps and other equipment, overload capacity: 120% rated current 60s, 150% rated current 3s.

6.2. F1 set (Start/Stop control parameters)

Code	Name	Range	Default	Modification
		0: Direct start-up		
F1-00	Start method	1: Speed tracking start-up	0	☆
		2: Asynchronous motor excitation start		

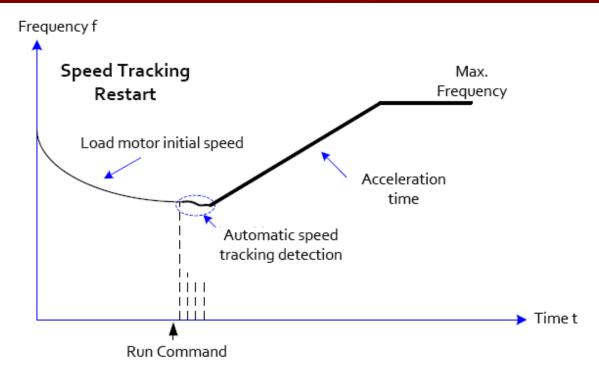
0: direct start

If the starting DC braking current and time F1-04/05 are set to 0, the inverter starts to run from the starting frequency F1-02.

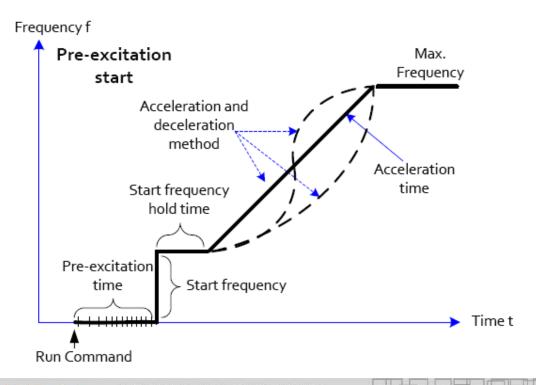


If both the starting DC braking current and time F1-04/05 are not set to 0, it will run at the time of DC braking F1-05 first, and then start running from the starting frequency F1-02.

DC braking and re-run is suitable for occasions where the load inertia is small and the motor may still be rotating when starting. As shown below.


1: Speed tracking restart

Speed tracking restart is suitable for large inertia loads. If the load motor still has inertial rotation when the inverter starts to run, this method is used to start. Shock-free smooth start of the rotating motor. In order to ensure the performance of the speed tracking restart, it needs to be carried out in the vector control mode. As shown below.



2: Asynchronous motor pre-excitation start

For asynchronous motors, establishing a magnetic field before running can improve the dynamic response performance of the motor and reduce the starting current, which needs to be done in the vector control mode. If the pre-excitation current and time F1-04/05 are set to 0, there is no pre-excitation process, and the operation starts from the starting frequency F1-02. If both the pre-excitation current and time F1-04/05 are not set to 0, the excitation will be started first, and the sequence is the same as the start of DC braking. As shown below.

Code	Name	Range	Default	Modification
		0: Start from the stop frequency	0	*
F1-01	1-01 Speed tracking method	1: Start from zero speed		
	mediod	2: Start from the maximum frequency		

Use the shortest time to complete the speed tracking process, and select the way the inverter tracks the motor speed:

- 0: The frequency starts to track down from the time of shutdown, usually this method is selected.
- 1: Track down from the power frequency, which is used in the case of restarting after a long power outage.
- 2: Track down from the maximum frequency F0-09, and apply to generating loads.

Code	Name	Range	Default	Modification
F1-02	Start frequency	0.00Hz ~ 10.00Hz	0.00Hz	☆
F1-03	Start frequency hold time	0.0s ~ 100.0s	0.0s	*

F1-02: Start frequency

Increase the starting frequency before starting, which can ensure the motor torque when starting, and is suitable for heavy-duty occasions such as lifts and cranes.

The starting frequency is not limited by the lower limit frequency F0-12.

During the forward/reverse switching process, the start frequency holding time will not be executed.

The target frequency cannot be less than the start frequency, otherwise the inverter will not execute the start command and keep the standby state. E.g:

the stands, states in	3 ·
Example 1	
F0-02=0	The frequency source is digital given
F0-01=2.00Hz	The digital setting frequency is 2.00Hz
F1-02=5.00Hz	The startup frequency is 5.00Hz
F1-03=2.0s	Start frequency hold time is 2.0s

At this time, the inverter is in standby state, and the output frequency of the inverter is 0.00Hz.

The acceleration time does not include the holding time of the starting frequency, while the simple PLC includes the holding time of the starting frequency. E.g:

	· - -9-
Example 2	
F0-02=0	The frequency source is digital given
F0-01=10.00Hz	The digital setting frequency is 10.00Hz
F1-02=5.00Hz	The startup frequency is 5.00Hz
F1-03=2.0s	Start frequency hold time is 2.0s

At this time, the inverter accelerates to 5Hz, continues for 2S, and then accelerates to a given frequency of 10Hz.

F1-03: Start frequency hold time

In order to ensure that there is enough time to build up the magnetic flux during startup, it is necessary to set a reasonable and sufficient startup time.

Code	Name	Range	Default	Modification
	Start DC braking			
F1-04	current/ pre-	0 ~ 100%	0%	*
	excitation current			
	Start DC braking			
F1-05	time/ pre-	0.0s ~ 100.0s	0.0s	*
	excitation time			

F1-04: Start DC braking current/pre-excitation current

Start DC braking, generally used to stop the running motor and then start it. Pre-excitation is used to make the asynchronous motor establish a magnetic field before starting, and improve the response speed. Start DC braking is only valid when the start mode is direct start. At this time, the inverter first performs DC braking according to the set starting DC braking current, and then starts to run after the starting DC braking time. If the DC braking time is set to 0, it will start directly without DC braking. The greater the DC braking current, the greater the braking force.

When this value is set to 0, it will skip the DC braking or pre-excitation stage and start directly. The larger the pre-excitation value, the larger the pre-magnetization current and the larger the torque at startup.

When the rated current of the motor is less than or equal to 80% of the rated current of the inverter, this setting value of 100% corresponds to 100% of the rated current of the motor;

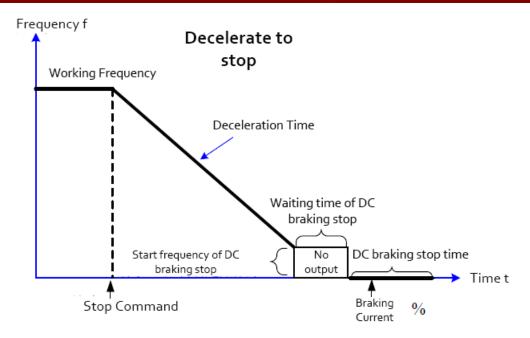
When the rated current of the motor > 80% of the rated current of the inverter, this setting value of 100% corresponds to 80% of the rated current of the inverter;

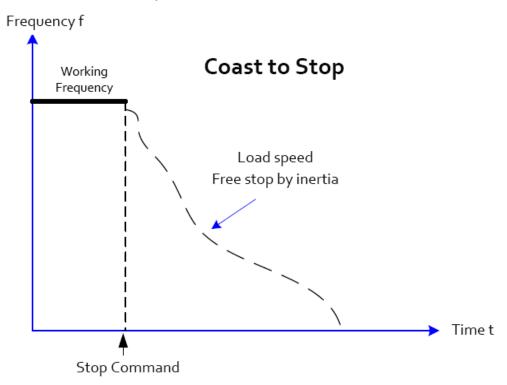
F1-05: Start DC braking time/pre-excitation time


When this value is set to 0, it will skip the DC braking or pre-excitation stage and start directly.

Code	Name	Range	Default	Modification
F1-06	Stop method	0: By deceleration control	0	₹-
1 1-00	Stop metriou	1: coast to stop	U	×

0: Decelerate to stop


When stopping, according to the set deceleration time and curve, reduce the output frequency to 0, then stop the output.



1: coast to stop

When it stops, the output will be stopped immediately, the motor will coast to stop in an uncontrolled state, and the deceleration time is not controlled by the inverter.

Code	Name	Range	Default	Modification
F1-07	Start frequency of DC braking stop	0.00Hz ~ Maximum frequency	0.00Hz	☆
F1-08	Waiting time of DC braking stop	0.0s ~ 100.0s	0.0s	☆

SIE	BRATEC			ELETRÔNICA
F1-09	DC braking stop current	0% ~ 100%	0%	☆
F1-10	DC braking stop time	0.0s ~ 100.0s	0.0s	☆

F1-07: Start frequency of DC braking at stop

In the process of deceleration and stop, when the frequency decreases to this set value, it starts to enter the DC braking state.

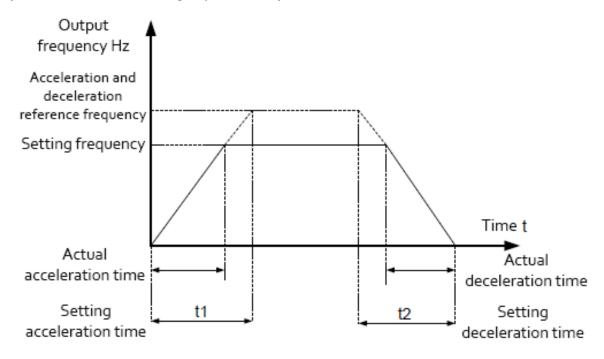
F1-08: DC braking waiting time at stop

After the deceleration frequency reaches the starting frequency of DC braking at stop, the output will be stopped first, and then enter the DC braking state after waiting for the time set by this function code.

F1-09: Stop DC braking current

Its current percentage logic refers to F1-04.

F1-10: DC braking time at stop


The holding time of DC braking, when this value is set to 0, there is no DC braking stage.

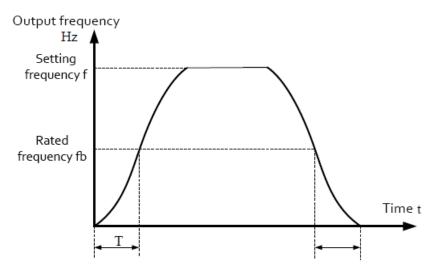
Code	Name	Range	Default	Modification
F1-11	Acceleration and deceleration method	O: Linear acceleration and deceleration S curve acceleration and deceleration A S curve acceleration and deceleration B	0	*

0: Linear acceleration and deceleration

Applicable to most situations, the output frequency increases or decreases linearly according to the set value of acceleration and deceleration time.

The preset acceleration/deceleration time 1/2/3/4 of F0-13/14 and F9-03~08 can be switched through the DI terminal (see the introduction of F6 group for details).

1: S-curve acceleration and deceleration A

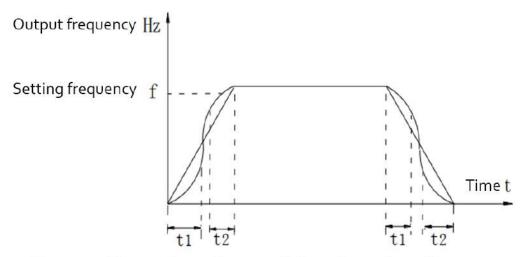


It is suitable for working conditions where the target frequency is fixed and requires smooth start or stop, such as transmission belts, elevators, etc. The output frequency increases or decreases according to the S curve set by F1-12/13.

2: It is suitable for working conditions where the target frequency changes in real time and requires smoothness and dynamic response. S curve B requires that the acceleration and deceleration time is less than 100s and the target frequency is less than 6 times the rated frequency of the motor, otherwise it will automatically switch to linear acceleration.

S-curve B acceleration and deceleration diagram

Code	Name	Range	Default	Modification
F1-12	S curve start time ratio	0.0% ~ (100.0%-F1-13)	30.0%	*
F1-13	S curve end time ratio	0.0% ~ (100.0%-F1-12)	30.0%	*


S curve A time setting

The proportion of time t1 at the beginning of the S curve + linear acceleration + the proportion of time t2 at the end of the S curve = the complete acceleration process, reaching the frequency target value. Therefore, the proportion of time at the beginning of the S curve + the proportion of time at the end of the S curve will not be greater than 100%.

S-curve B acceleration and deceleration diagram

Code	Name	Range	Default	Modification
F1-14	Dynamic braking point	Single-Phase models: 200.0 ~ 410.0V Three-Phase models: 310.0 ~ 800.0V	350.0 (Single-Phase) 700.0 (Three-Phase)	☆

Through the cooperation of the braking unit and the braking resistor, the power generated by the motor during the deceleration process can be consumed.

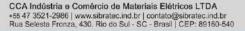
The higher the breaking point voltage, the later the braking is involved, and the greater the power consumption of the resistor during braking.

For the recommended configuration of the braking resistor, please refer to the description in the "C.6. Braking Resistor" section in the user manual.

Code	Name	Range	Default	Modification
F1-15	Brake usage rate	0 ~ 100%	100%	☆

It is used to adjust the duty ratio of the conduction of the braking unit. The larger the setting value is, the better the braking effect will be, but the fluctuation of the DC bus voltage will also be larger.

Code	Name	Range	Default	Modification
F1-16	Motor speed tracks tempo	1~ 100	20	☆


Set the speed of software speed tracking. The larger the setting value is, the faster the tracking speed will be, but it may also cause the speed tracking effect to deteriorate. There is no need to adjust this parameter for hardware speed tracking.

Code	Name	Range	Default	Modification
F1-17	Motor speed tracks close-loop current KP	0~ 1000	500	☆

Proportion in PID, when the default speed tracking speed is not enough, adjust this parameter.

Code	Name	Range	Default	Modification
F1-18	Motor speed tracks close-loop current	0~ 1000	800	☆

Proportion in PID, when the default speed tracking speed is not enough, adjust this parameter.

Code	Name	Range	Default	Modification
F1-19	Motor speed tracks close-loop current value	30~ 200	100	*

Proportion in PID, when the default speed tracking speed is not enough, adjust this parameter.

Code	Name	Range	Default	Modification
F1-20	Motor speed tracks close-loop current limit value	10~ 100	30	*
F1-21	Motor speed tracks voltage rise time	0.5~ 3.0	1.1	*
F1-22	De-magnetizing time	0.00~ 5.00	1.00	*

F1-20/ F1-21: It is not recommended to modify this parameter.

F1-22: Demagnetization time

This set value is the waiting time for restarting after stopping, and it can only take effect when the speed tracking is turned on.

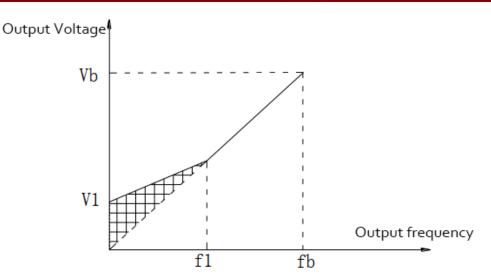
6.3. F2 set V/F control parameters

This group of function codes is only valid for V/F control and invalid for vector control. V/F control is suitable for general loads such as fans and water pumps, or where one inverter has multiple motors, or where the power of the inverter and the motor are quite different.

Code	Name	Range	Default	Modification
F2-00	Torque boost	0.0%: (Automatic torque boost)	Model	☆
		0.1% ~ 30.0%	determination	

Torque boost is mainly used to improve low-frequency torque under V/F control.

When the set value is kept at the default value of 0, the inverter will automatically increase the torque. In this case, the inverter will automatically calculate the torque boost according to the set motor parameters. If the starting torque of the motor is not enough to drag the load, the torque boost value can be manually set according to the actual demand. It should be noted that if the torque boost is too low, the motor will be


powerless at low speed; if the torque boost is too high, the motor will run over excitation, the output current of the inverter will be large, and the efficiency will be reduced.

V1: Manual torque boost voltage

Vb: Maximum output voltage

f1: Manual torque boost cut-off frequency

fb: Rated working frequency

Code	Name	Range	Default	Modification
F2-01	Torque boost cut-off frequency	0.00Hz ~ Maximum frequency (F0-09)	50.00Hz	*

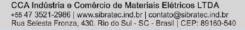
This value sets the torque boost stop frequency. When the inverter output frequency is higher than this value, the torque boost stops.

Code	Name	Range	Default	Modification
F2-02	VF slip compensation gain	0.0% ~ 200.0%	0.0%	☆

Compensate for the motor speed deviation generated by the asynchronous motor when the load increases, so that the motor speed can be basically stable when the load changes.

When adjusting the slip compensation, it is generally carried out under the rated load, and the purpose is to adjust the motor speed to be consistent with the target speed.

The V/F slip compensation gain is set to 100.0%, which means that the compensated slip when the motor has rated load is the rated slip of the motor, and the rated slip of the motor is calculated by the inverter through the rated frequency and the rated speed of the motor in group H1.


When adjusting the V/F slip compensation gain, it is generally based on the principle that the motor speed is basically the same as the target speed under the rated load. When the motor speed is not on target.

Code	Name	Range	Default	Modification
F2-03	VF overexcitation	0 ~ 200	60	☆

When the V/F mode decelerates and stops, the bus voltage is suppressed from rising to prevent the inverter from reporting overvoltage. The larger the set value, the stronger the suppression ability, and it is also easy to cause the output current to increase. It is necessary to adjust the settings according to the actual load conditions.

Under the condition of small inertia load or equipped with braking energy absorption device, this setting value is recommended to be set to 0.

SI	BRATEC			ELETRÔNICA
F2-04	VF oscillation suppression gain	0 ~ 100	Model determination	☆

On the premise of effectively suppressing oscillation, it should be set as small as possible, so as not to adversely affect the VF operation.

Please select this gain as 0 when the motor has no oscillation phenomenon. Only when the motor oscillates significantly, it is necessary to increase the gain appropriately. The larger the gain, the more obvious the suppression of oscillation.

When using the oscillation suppression function, the rated current and no-load current parameters of the motor are required to be accurate, otherwise the VF oscillation suppression effect will not be good.

Code	Name	Range	Default	Modification
		0: Linear V/F		
		1: Multipoint V/F		
		2: Square V/F		*
		3: 1.2 power V/F	0	
F2-05	VF curve setting	4: 1.4 power V/F		
		5: 1.6 power V/F		
		6: 1.8 power V/F		
		10: VF full separate mode		
		11: VF semi-separate mode		

0: Straight line V/F

V and F change in a fixed proportional relationship and are suitable for ordinary constant torque loads, such as large inertia loads.

1: Multi-point V/F

According to the actual load requirements, multi-point curves can be set through F2-06~11, which are suitable for special loads such as centrifuges and dehydrators.

2-6: The higher the power, the lower the output voltage.

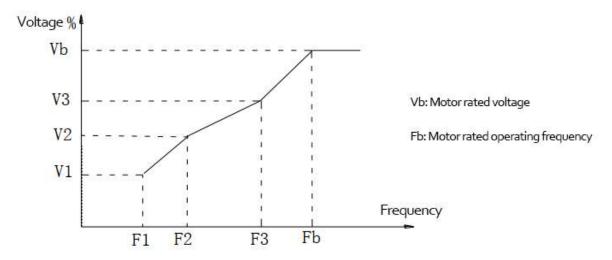
It is suitable for loads such as fans and pumps, and needs to be set according to the actual load:

- a. When the load is working in the long-term load area, the output voltage of the inverter should not be too high (the motor power factor should not be too low), otherwise the iron loss of the motor will be too large; the output voltage of the inverter should not be too low (the motor power factor is too high)), otherwise the copper loss of the motor will be too large, and the overload capacity of the motor will become lower.
- b. When the load is working in the highest load area, the output current of the inverter cannot exceed the rated current of the inverter and the allowable current of the motor at this speed.
- c. When the load is running in all load areas, the temperature rise cannot exceed the rated temperature rise of the motor.
- d. The starting current requirement should be met.
- 10: VF fully separated mode

At this time, the output frequency and output voltage of the inverter are independent of each other, the output frequency is determined by the frequency source, and the output voltage is determined by the voltage source F2-13 separated by VF. Generally used in torque motor control and other occasions.

11: VF semi-separate mode

In this case, V and F are proportional, but the proportional relationship can be set by the voltage source F2-13



separated from VF, and the relationship between V and F is also related to the rated voltage and rated frequency of the motor set in the motor control parameters. Assuming that the voltage source input is X (X is a value of $0\sim100\%$), the relationship between the output voltage V of the inverter and the frequency F is: V/F=2*X*(rated motor voltage)/(rated motor frequency).

Code	Name	Range	Default	Modification
F2-06	Multipoint VF frequency point 1	0.00Hz ~ F2-08	0.00Hz	*
F2-07	Multi-point VF voltage point 1	0.0% ~ 100.0%	0.0%	*
F2-08	Multipoint VF frequency point 2	F2-06 ~ F2-10	0.00Hz	*
F2-09	Multi-point VF voltage point 2	0.0% ~ 100.0%	0.0%	*
F2-10	Multipoint VF frequency point 3	F2-08 ~ Motor rated frequency (F3-03)	0.00Hz	*
F2-11	Multi-point VF voltage point 3	0.0% ~ 100.0%	0.0%	*

The multi-point V/F curve should be set according to the load characteristics of the motor.

Similar to the explanation in the power curve, if the voltage is set too high at low frequency, it may cause the motor to overheat or even burn, and the inverter may be protected by over-stashing or over-current. The following figure is a schematic diagram of the setting of multi-point V/F curve.

V1-V3: The voltage percentage of the 1st-3rd stage of the V/F multi-speed

F1-F3: The frequency of the 1st-3rd stage of the V/F multi-speed

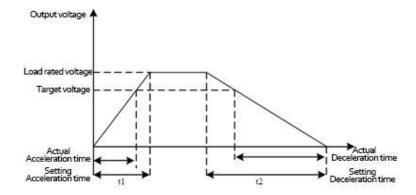
Code	Name	Range	Default	Modification
F2-12	Oscillation suppression gain	0 ~ 4	3	*

Used in conjunction with the setting of F2-04, when the motor still oscillates significantly after adjusting the VF oscillation suppression gain alone, you can try to change the settings in this mode.

Code	Name	Range	Default	Modification
		0: Digital setting (F2-14)		
		1: AI1		
		2: AI2 (rotary potentiometer)		
		3: PULSE pulse setting (DI5)	0	
F2-13	5: Simple PLC 6: PID 7: Communication setti NOTICE: 100.0% cor	4: Multi-segment instructions		☆
12 13		5: Simple PLC		
		6: PID		
		7: Communication setting		
		NOTICE: 100.0% correspond to the rated voltage of the motor		

V/F separation is generally used in induction heating, inverter power supply and torque motor control and other occasions.

When V/F separation control is selected, the output voltage can be set by function code F2-14, or it can be given by analog quantity, multi-segment instruction, PLC, PID or communication. When non-digital setting is used, 100% of each setting corresponds to the rated voltage of the motor. When the percentage of analog output setting is a negative number, the absolute value of the setting is used as the effective setting value.

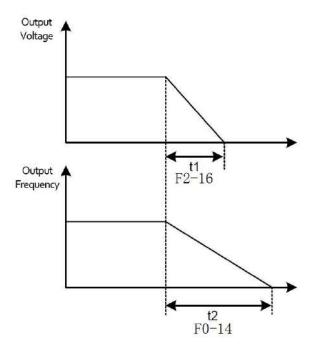

Refer to the explanation of the main frequency source X setting.

Code	Name	Range	Default	Modification	
F2-14	VF separate voltage digital setting	0V ~ Rated voltage of motor (F3-01)	0V	☆	

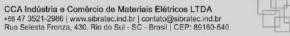
The given value corresponding to the digital setting in F2-13 cannot exceed the rated voltage setting in the motor parameters.

Code	Name	Range	Default	Modification
	Voltage acceleration time of VF separation	0.0s ~ 1000.0s	0.0s	☆
F2-15		NOTICE: The time interval from 0V to the rated voltage of the motor		
F2-16	Voltage deceleration time of VF separation	$0.0s \sim 1000.0s$ NOTICE: The time interval from 0V to the rated voltage of the motor	0.0s	☆

- F2-15: Indicates the time t1 required for the voltage to accelerate from 0 to the rated voltage of the motor.
- F2-16: Indicates the time t2 required for the voltage to decelerate from the rated voltage of the motor to 0.

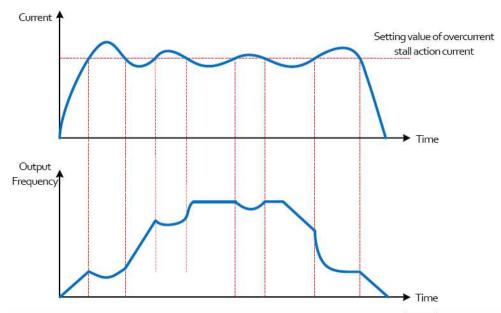





Code	Name	Range	Default	Modification
F2-17	Shutdown mode selection of VF separation	O: Frequency/voltage independently reduced to 0 1: After the voltage is reduced to 0, the frequency is reduced again	0	☆

0: The VF separation output voltage decreases to 0 according to the voltage deceleration time F2-16 (t1), and the output frequency decelerates to 0 according to the deceleration time 1/2/3/4 (t2). As shown below.

1: The output voltage of the VF separation is reduced to 0 according to the voltage first deceleration time F2-16 (t1), and then the output frequency is decelerated to 0 according to the deceleration time 1/2/3/4 (t2). As shown below.



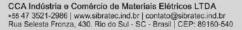
SIBRATEC Code Name Range Default Modification F2-18 Action current of overcurrent stall 50 ~ 200% 150% ★

During the operation of the inverter, when the motor is overloaded and the output exceeds the overcurrent stall action current, the inverter will reduce the output frequency and voltage to achieve the purpose of reducing the output current.

If the load increases and the output current exceeds the overcurrent stall setting value, the overcurrent stall action is triggered, and the output frequency begins to decrease until the current decreases below the overcurrent speed setting value, and the output frequency begins to increase again. As shown below.

Code	Name	Range	Default	Modification
F2-19	Overcurrent stall	0: Disable	1	
FZ-19	enable	1: Enable	1	*

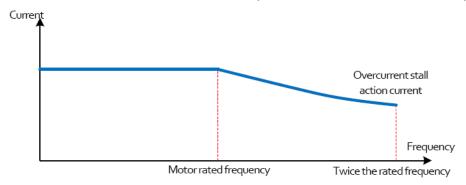
0: Disable over-current stall action, which may trigger wave-by-wave current limit or overload.

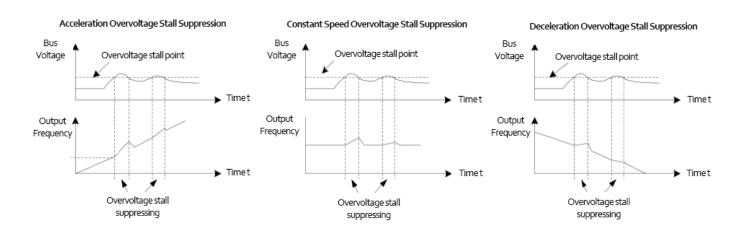

1: Enable over-current stall action, which may lead to longer acceleration time or deceleration at constant speed. When a high-power motor works at a low carrier frequency, the wave-by-wave current limiting may be triggered, resulting in insufficient torque. The rated value of the overcurrent stall action current F2-18 can be lowered to improve the working state.

Code	Name	Range	Default	Modification
F2-20	Suppression gain of overcurrent stall	0 ~ 100	20	☆

The larger the gain, the better the limiting ability, but if the set value is too large, it will cause oscillation, and it needs to be set according to the actual working conditions.

Code	e Name	Range	Default	Modification
F2-2	Double speed over current stall action Current compensation coefficient	50 ~ 200%	50%	*




When running in the high frequency region exceeding the rated frequency of the motor, the working current of the motor is relatively small, and the same stall current limit will cause the motor speed to drop significantly. Set the current compensation coefficient for double-speed overcurrent stall action to reduce the stall action current when the frequency is higher than the rated frequency, which can effectively prevent the motor from stalling. Suitable for high operating frequency occasions.

Over-current stall action current exceeding rated frequency = (motor rated frequency/operating frequency) * double-speed over-speed stall action current compensation coefficient * over-current stall action current. The compensation coefficient is set to 50% to close the double-speed overcurrent stall action compensation.

Code	Name	Range	Default	Modification
F2-22	Operation voltage of overvoltage stall	Single-Phase models: 160.0 ~ 410.0V Three-Phase models: 200.0 ~ 800.0V	350.0V (Single-Phase) 760.0V (Three-Phase)	*

During the operation of the inverter, if the bus voltage exceeds the rectified value of the mains input voltage, it means that the motor speed is greater than the output frequency, and the system works in the power generation state. When the bus voltage continues to rise and triggers the overvoltage stall action voltage, the inverter will adjust the output frequency to avoid further rise in bus voltage.

Code	Name	Range	Default	Modification
F2-23	Overvoltage stall	0: Disable	1	
FZ-23	enable	1: Enable	1	*

0: Disable overvoltage stall action. If equipped with a braking energy absorption device, it is recommended to

set it to disabled.

1: Enable overvoltage stall action. If the load is small inertia, the back-feeding energy is not large, and the braking energy absorption device is not equipped, this function is enabled.

Code	Name	Range	Default	Modification
F2-24	Suppress frequency gain of overvoltage stall	0 ~ 100	30	☆
F2-25	Suppress voltage gain of overvoltage stall	0 ~ 100	30	☆
F2-26	Maximum ascent limit frequency of overvoltage stall	0 ~ 50Hz	5Hz	*
F2-27	Time constant of slip compensation	0.1 ~ 10.0	0.5	☆
F2-33	In-line torque compensation gain	80 ~ 150	100	*

- F2-24: Increase the suppression frequency gain, which can strengthen the bus voltage control effect, but will cause the output frequency to fluctuate.
- F2-25: Increase the suppression voltage gain to reduce the overshoot of the bus voltage.
- F2-26: Up limit frequency = maximum frequency F0-09 + overvoltage stall maximum up limit frequency F2-26.
- F2-27: The smaller the setting value, the faster the response speed, but in the large inertia load system, the too small value will easily lead to overvoltage fault.
- F2-33: The output torque can be increased, but excessive adjustment may lead to increased motor loss or motor oscillation.

6.4. F3 set (First motor vector control parameters)

Code	Name	Range	Default	Modification
F3-00	Motor rated power	0.1kW ~ 1000.0kW	Model determination	*
F3-01	Motor rated voltage	1V ~ 2000V	Model determination	*
F3-02	Motor rated current	0.01A ~ 655.35A (Inverter power ≤55kW) 0.1A ~ 6553.5A (Inverter power >55kW)	Model determination	*
F3-03	Motor rated frequency	0.01Hz ~ Maximum frequency	Model determination	*
F3-04	Motor rated speed	1rpm ~ 65535rpm	Model determination	*

The above function codes are the parameters on the motor nameplate. Whether V/F control or vector control is used, the relevant parameters need to be set accurately according to the motor nameplate.

In order to obtain better V/F or vector control performance, motor parameter tuning is required, and the accuracy of the tuning result is closely related to the correct setting of the motor nameplate parameters.

Code	Name	Range	Default	Modification
F3-05	Asynchronous motor stator	0.001Ω ~ 65.535Ω (Inverter power≤55kW)	Tuning	+
	resistance	$0.0001\Omega \sim 6.5535\Omega$ (Inverter	parameters	

SIE	BRATEC			ELETRÔNICA
		power>55kW)		
F3-06	Asynchronous motor rotor resistance	$0.001\Omega \sim 65.535\Omega$ (Inverter power ≤ 55 kW) $0.0001\Omega \sim 6.5535\Omega$ (Inverter power > 55 kW)	Tuning parameters	*
F3-07	Asynchronous motor leakage inductance	0.01mH ~ 655.35mH (Inverter power ≤ 55kW) 0.001mH ~ 65.535mH (Inverter power>55kW)	Tuning parameters	*
F3-08	Asynchronous motor mutual inductance	0.1mH ~ 6553.5mH (Inverter power≤55kW) 0.01mH ~ 655.35mH (Inverter power>55kW)	Tuning parameters	*
F3-09	Asynchronous motor no-load	0.01A ~ F3-02 (Inverter power≤55kW)	Tuning	•
	current	0.1A ~ F3-02 (Inverter power>55kW)	parameters	*

F3-05 \sim F3-09 are the parameters of the asynchronous motor, these parameters are generally not on the motor nameplate, and need to be obtained through the automatic tuning of the inverter. Among them, "asynchronous motor static tuning" can only obtain three parameters of F3-05 \sim F3-07, and "asynchronous motor complete tuning" can obtain not only all five parameters, but also encoder phase sequence, current loop PI parameters, etc.

When changing the motor rated power F3-00 or motor rated voltage F3-01, the inverter will automatically modify the parameter values of F3-05~F3-09.

Code	Name	Range	Default	Modification	
		0: No operation	0 *		
		1: Asynchronous machine static			
		parameter tuning			
F3-10	Tuning options	2: Asynchronous machine dynamic		*	
		complete tuning			
		3: Asynchronous machine static complete		*	
		tuning			

The stator resistance, rotor resistance, leakage inductance, mutual inductance and no-load current of the asynchronous motor can be obtained by tuning.

At the same time, the tuning is also divided into on-load tuning and off-load tuning.

The tuning effect is sorted from best to worst: dynamic off-load tuning --> static complete tuning --> static partial tuning --> dynamic on-load tuning.

6.5. F4 set (Vector control parameters)

Code	Name	Range	Default	Modification
F4-00	Speed loop proportional gain 1	1 ~ 100	30	☆
F4-01	Speed loop integral time 1	0.01s ~ 10.00s	0.50s	☆
F4-02	Switching frequency 1	0.00 ~ F4-05	5.00Hz	☆
F4-03	Speed loop proportional gain 2	1 ~ 100	20	☆

ZIRKALEL				ELETRÔNICA	
Code	Name	Range	Default	Modification	
F4-04	Speed loop integral time 2	0.01s ~ 10.00s	1.00s	☆	
F4-05	Switching frequency 2	F4-02 ~ Maximum frequency (F0-09)	10.00Hz	☆	

By setting the proportional coefficient and integral time of the speed regulator, the speed dynamic response characteristics of the vector control can be adjusted.

If the proportional gain is large and the integral time is small, the response will be fast, but if the adjustment is too large, oscillation will occur; otherwise, the response will lag.

If it is necessary to adjust the parameters according to the load, first adjust the proportional gain so that the system will not oscillate; then adjust the integral to reduce overshoot. To meet the needs of fast response and reduce errors.

Code	Name	Range	Default	Modification
F4-06	SVC speed feedback filter time	0.000s ~ 1.000s	0.000s	☆

Increasing the filter time can improve the stability of the motor, but the dynamic response will become weaker; reducing the filter time can strengthen the dynamic response, but if it is too small, it will cause the motor to oscillate.

Code	Name	Range	Default	Modification
F4-07	Speed loop integral properties	Units digit: Integral separation	0	☆
		0: Disable		
		1: Enable		

Turning off the speed loop integration will speed up the response speed, but it may cause the speed overshoot to be too large.

Code	Name	Range	Default	Modification
F4-08	Vector control slip gain	50% ~ 200%	100%	☆

This setting is for vector control and used to adjust slip, same as F2-02 VF slip compensation gain.

In the closed-loop vector system, the speed will not be affected, but the output current will be affected. If the load capacity is weak, this parameter can be appropriately reduced.

Code	Name	Range	Default	Modification
		0: Function code F4-10 setting		
	Torque upper limit source for speed control mode	1: AI1	0	☆
		2: AI2 (Rotary potentiometer)		
F4-09		3: PULSE pulse setting		
		4: Communication setting		
		The full scale of option 1-4 corresponds to F4-10		


It is used to limit the maximum output torque of the electric state in the speed control mode.

When this function code is set to 0, its digital reference comes from F4-10.

The control mode of each channel of torque upper limit source is similar to that of each channel of main frequency source X, and its 100% value corresponds to the value given by F4-10 torque upper limit number.

Code	Name	Range	Default	Modification

SIE	RATEC			ELETRÔNICA
F4-10	Torque upper limit digital setting for speed control mode	0.0% ~ 200.0%	150.0%	☆

Set the digital given value of electric state torque control or the reference value of AI/high-speed DI/communication given and other channels.

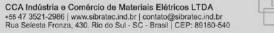
Code	Name	Range	Default	Modification
		0: Function code F4-12 setting		☆
	Speed control	1: AI1	0	
		2: AI2 (Rotary potentiometer)		
F4-11	(brake) torque	3: PULSE pulse setting		
	upper limit source	4: Communication setting		
		1-4: Communication setting The full scale of option 1-4 corresponds to F4-10		

Used to limit the maximum output torque in braking (generating) state in speed control mode. The given source description is the same as F4-09.

Code	Name	Range	Default	Modification
F4-12	Speed control (brake) torque upper limit digital setting	0.0% ~ 200.0%	150.0%	☆

Set the digital given value of torque control in braking (generating) state or the reference value of AI/high-speed DI/communication given and other channels.

Code	Name	Range	Default	Modification
F4-14	Proportional gain of excitation regulation	0 ~ 60000	2000	*
F4-15	Integrating gain of excitation regulation	0 ~ 60000	1300	*
F4-16	Proportional gain of torque adjustment	0 ~ 60000	2000	*
F4-17	Integrating gain of torque adjustment	0 ~ 60000	1300	*


Motor parameter identification is automatically obtained during comprehensive self-learning, and modification is not recommended.

Cod	de	Name	Range	Default	Modification
F4-2	20	Maximum flux- weakening current	100~ 110	Model determination	*

The maximum output voltage is limited. Increasing this setting value can improve the load capacity of the field weakening area (over the rated speed), but the ripple will increase and increase the heat generation; otherwise, the ripple will be reduced and the heat generation will be reduced, but it will cause the weak field area. The load capacity is reduced.

Code	Name	Range	Default	Modification
F4-21	Automatic tuning factor of flux-	50~ 200	100	☆

Optimize the torque performance in the field weakening area. Reducing this value can improve the acceleration effect in the field weakening area, but it will reduce the dynamic response capability of the load (the speed drops after loading).

6.6. F5 set (Torque control parameters)

Code	Name	Range	Default	Modification
F5-00	Speed/torque	0: Speed control	0	☆
	control mode options	1: Torque control		

For switching speed/torque control, it should be noted that:

Torque control needs to be performed in vector control mode.

When the DI terminal selects the "43: speed control/torque control switching" function, the DI terminal is effective, and the corresponding set value of this function code is reversed.

When the DI terminal selects the "29: Torque control prohibition" function, the DI terminal will force to enter the speed control mode when the DI terminal is valid.

Code	Name	Range	Default	Modification
		0: Digital setting (F5-03)		☆
	Torque setting	1: AI1	0	
F5-01	source options for torque control	2: AI2 (Rotary potentiometer)		
	mode	3: PULSE pulse (DI5)		
		4: Communication setting		

Torque reference source selection.

When this function code is set to 0, its digital reference comes from F5-03.

The control mode of each channel of torque upper limit source is similar to that of each channel of main frequency source X.

Code	Name	Range	Default	Modification
F5-03	Torque digital setting for torque control mode	-200.0% ~ 200.0%	150.0%	☆
F5-04	Torque filtering	0 ~ 100.0%	0.0%	☆
F5-05	Maximum frequency of torque forward	0.00Hz ~ Maximum frequency (F0-09)	50.00Hz	☆
F5-06	Torque reverse maximum frequency	0.00Hz ~ Maximum frequency (F0-09)	50.00Hz	☆
F5-07	Torque acceleration time	· U.UUS ~ 650.UUS		☆
F5-08	Torque deceleration time	0.00s ~ 650.00s	0.00s	☆

F5-03: 100% corresponds to the rated torque of the motor.

F5-04: Modification is not recommended.

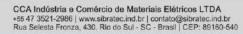
F5-05/ F5-06: Limit the maximum operating frequency in torque control mode to avoid high speed when the load is less than the motor torque.

F5-07/F5-08: When the torque acceleration and deceleration time is small, the motor speed response is good, but it is easy to cause problems such as vibration and increased noise. It needs to be adjusted according to the actual application site requirements. For example, in master-slave control, if the slave needs to execute the master command quickly, set the torque acceleration and deceleration time to 0.

6.7. F6 set (Input terminal parameters)

H series inverters are equipped with 5 multi-function digital input terminals as standard (DI5 can be used as high-speed pulse input terminal) and 2 analog input terminals.

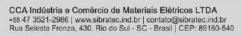
Code	Name	Default	Modificatio n
F6-00	DI1 terminal function selection	1	*
F6-01	DI2 terminal function selection	4	*
F6-02	DI3 terminal function selection	9	*



F6-03	DI4 terminal function selection	1	12	*
F6-04	DI5 terminal function selection	1	13	*

These parameters are used to set the functions of the digital multi-function input terminals. The functions that can be selected are shown in the table below:

Code	Name	Description
		There is no linkage action. If the terminal is blank and
0	No function	unused, it is recommended to set it to 0 to avoid
		malfunction.
		When the two-wire type is 1 (F6-11 is set to 0), the DI
	Forward run FWD or run	terminal is valid for forward running.
1	Forward run FWD or run command	
	Command	When the two-wire type 2 (F6-11 is set to 1), the DI
		terminal is valid to run.
		When the two-wire type is 1 (F6-11 is set to 0), the DI
		terminal is valid for reverse operation.
2	Reverse running REV or forward	
' - '	and reverse running direction	When the two-wire type 2 (F6-11 is set to 1), the DI
		terminal is valid for reverse running, and when it is invalid,
		it is forward running.
		When the two-wire type is 1 (F6-11 is set to 0), the DI
		terminal is valid for reverse operation.
3	Three-wire running control	2/56 44 : 1, 4) 11 57
		When the two-wire type 2 (F6-11 is set to 1), the DI
		terminal is valid for reverse running, and when it is invalid, it is forward running.
4	Forward log (FIOC)	5
5	Forward Jog (FJOG)	For jog operation, see F9-00~02 jog operation related setting explanation in F9 group auxiliary functions.
	Reverse Jog (RJOG)	
6	Terminal UP	The UP/DOWN command is given through the terminal, which is equivalent to UP/DOWN on the keyboard.
		Willer is equivalent to OP/DOWN on the Reyboard.
7	Terminal DOWN	The trigger state is equivalent to pressing the button all
' '		the time, and the invalid state is equivalent to releasing
		the button.
		After triggering, it is equal to set F1-06 stop mode to
8	coast to stop	coast to stop , and then enable stop.
	L L (DECET)	The fault reset of the inverter is equivalent to the RST
9	Fault reset (RESET)	function on the keyboard.
		After the terminal signal becomes valid, the inverter
		decelerates to stop and saves the current state, and
10	run pause	parameters such as PLC and PID are also retained; after
		the terminal signal becomes invalid, the inverter returns to
		the state before the terminal becomes valid.
11	External fault normally open input	Normally open input, when the terminal signal takes
1 11	TEXCETTAL TOUR HOLLING OPEN INPUT	effect, the inverter will report E15/A15 fault.
12	Multi-segment command terminal	It is composed of 4/3/2/1 and has a total of 4-bit binary
	1	control from high to bottom, which is used to control the
13	Multi-stage command terminal 2	corresponding value of 00~15 entering the multi-segment



14	Multi-stage command terminal 3	instruction FE group.			
15	Multi-stage command terminal 4	That is, 16 speeds or 16 other commands can be set throug the 16 states of these 4 terminals. See Appendix 1 for details.			
16	Acceleration and deceleration time selection terminal 1	Composed of 2/1, it is controlled by 2-bit binary from high to low, which is used to select the acceleration and			
17	Acceleration and deceleration time selection terminal 2	deceleration time 1/2/3/4. See Appendix 2 for details.			
18	Frequency source switching	Cooperate with F0-06 to switch the frequency source.			
19	UP/DOWN setting clear (terminal, keyboard)	When the frequency setting is digital setting, after this terminal takes effect, the frequency previously adjusted by the UP/DOWN button or the UP/DOWN function terminal will be restored to the value set by the preset frequency F0-01 immediately.			
20	Control command switching	When the command source selection F0-21 is set to 1: terminal command channel, when this terminal is valid, the command source can be switched to the key command channel; when the terminal is invalid, it will be switched back to the terminal command channel.			
20	terminal 1	When the command source selection F0-21 is set to 2: communication command channel, the terminal can be enabled to switch the command source to the key command channel; when the terminal is invalid, it will be switched back to the communication command channel.			
21	Acceleration and deceleration prohibition	After this terminal takes effect, the inverter will not change any output frequency except the stop command.			
22	PID pause	After this terminal takes effect, the PID operation is temporarily stopped and the current frequency is maintained.			
23	PLC status reset	After this terminal is triggered, the inverter returns to the PLC initial value.			
24	Wobble Pause	In wobble frequency control, after this terminal takes effect, the wobble frequency stops and the inverter runs at the center frequency.			
25	Counter input	Used in the counting function, if the terminal is valid, it will trigger a count.			
26	Counter reset	It is used in the counting function, and the counter is cleared when the terminal is valid.			
27	length count input	Used in the length counting function, if the terminal is valid, it will trigger a length record.			
28	length reset	It is used in the length counting function. When the terminal is valid, the length is cleared.			
29	Torque control prohibited	Used in torque control mode, after this terminal takes effect, it will switch from torque control to speed control. After the terminal is invalid, it will automatically switch back to the torque control mode.			
30	PULSE (pulse) frequency input	Set DI5 as high-speed pulse terminal, if DI5 needs to be			

	(only valid for DI5)	used as high-speed pulse input, then F6-04 must be set to 30
31	Immediate DC braking	When the terminal becomes effective, it immediately switches to the DC braking state.
32	External fault normally closed input	Normally closed input, when the terminal signal takes effect, the inverter will report E15/A15 fault.
33	Frequency modification enable	If the terminal is valid, it is allowed to modify the frequency by command. If the terminal is invalid, it is forbidden to modify the frequency.
34	PID action direction is reversed	The terminal is valid, and the setting value of FC-03 of the PID action direction is reversed.
35	External stop terminal 1	When the command source selection F0-21 is set to 0: the operation panel command channel, the inverter will stop when this terminal is enabled, which is equivalent to the STOP button on the keyboard.
36	Control command switching	When the command source selection F0-21 is set to 1: terminal command channel, the terminal will be switched to the communication command channel when this terminal is valid.
] 30	terminal 2	When the command source selection F0-21 is set to 2: communication command channel, the terminal will be switched to the terminal command channel when this terminal is valid.
37	PID integral pause	When used for PID operation, the PID integral function is suspended and becomes PD control.
38	Switch between frequency source X and preset frequency	When the terminal is valid, the frequency reference is switched from the main frequency source X to the value of the preset frequency F0-01; when the terminal is invalid, it changes back to the main frequency source X
39	Frequency source Y and preset frequency switch	When the terminal is valid, the frequency reference will be switched from the auxiliary frequency source Y to the value of the preset frequency F0-01; if the terminal is invalid, it will return to the auxiliary frequency source Y.
40	PID parameter switching	It is used when the PID parameter switching condition FC-18 is set to "1: Switching by DI terminal". When the terminal is invalid, use PID parameter 1; when the terminal is valid, use PID parameter 2.
41	User-defined fault 1	When the terminal signal takes effect, the inverter reports E24/A24 fault.
42	User-defined fault 2	When the terminal signal takes effect, the inverter reports E25/A25 fault.
43	Speed control/torque control switching	When F5-00 is set to "0 speed control", the control mode is switched to torque mode when the terminal is valid; it is switched back to the speed mode when the terminal is invalid. When F5-00 is set to "1 Torque control", the control mode
		is switched to speed mode when the terminal is valid; the torque mode is switched back to when the terminal is invalid.

CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

44	emergency pull over	When the terminal is valid, the system enters the emergency stop state, which will stop the motor as soon as possible. When the terminal is in an active state, it cannot be turned on again.		
45	External stop terminal 2	When the command source F0-21 is set to any state, the inverter will decelerate to stop, and the deceleration time is given as the deceleration time 4 of F9-08.		
46	Deceleration DC braking	After this terminal takes effect, it first decelerates to the stop DC braking initial frequency F1-07, and then executes the stop DC braking logic.		
47	The running time is cleared	If the current running time of U0-22 is less than the set value of the current running time (greater than 0) of F9-39, the current running time can be cleared when the terminal is valid, otherwise it cannot be cleared.		

Appendix 1 Function Description of Multi-segment Instructions

4 command multi-segment function terminals can be combined into 16 states, these 16 states correspond to 16 command setting values. The specific table is as follows

K4	K3	K2	K1	Instruction settings	Corresponding parameters
OFF	OFF	OFF	OFF	Multi-segment instruction 0	FE-00
OFF	OFF	OFF	ON	Multi-segment instruction 1	FE-01
OFF	OFF	ON	OFF	Multi-segment instruction 2	FE-02
OFF	OFF	ON	ON	Multi-segment instruction 3	FE-03
OFF	ON	OFF	OFF	Multi-segment instruction 4	FE-04
OFF	ON	OFF	ON	Multi-segment instruction 5	FE-05
OFF	ON	ON	OFF	Multi-segment instruction 6	FE-06
OFF	ON	ON	ON	Multi-segment instruction 7	FE-07
ON	OFF	OFF	OFF	Multi-segment instruction 8	FE-08
ON	OFF	OFF	ON	Multi-segment instruction 9	FE-09
ON	OFF	ON	OFF	Multi-segment instruction 10	FE-10
ON	OFF	ON	ON	Multi-segment instruction 11	FE-11
ON	ON	OFF	OFF	Multi-segment instruction 12	FE-12
ON	ON	OFF	ON	Multi-segment instruction 13	FE-13
ON	ON	ON	OFF	Multi-segment instruction 14	FE-14
ON	ON	ON	ON	Multi-segment instruction 15	FE-15

When the frequency source is selected as multi-speed, 100.0% of the function code FE-00%FE-15 corresponds to the maximum frequency F0-09. In addition to the multi-step speed function, the multi-step command can also be used as a given source of PID, or as a voltage source of V/F separation control, etc., to meet the needs of switching between different given values.

Appendix 1 Function description of acceleration/deceleration time selection terminal

		,
Terminal 1	Terminal 1	Acceleration or deceleration time Corresponding parameters selection
OFF	OFF	Acceleration and deceleration time F0-13 F0-14
OFF	ON	Acceleration and deceleration time F9-03 F9-04

CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

SIBRATEC 2 ON OFF Acceleration and deceleration time SP-05 F9-06 3 ON Acceleration and deceleration time F9-07 F9-08

Code	Name	Range	Default	Modification
F6-05	DI filter time	0.000s ~ 1.000s	0.010s	☆

If the DI terminal is disturbed at the application site, the filter time can be appropriately increased; the longer the filter time, the slower the DI action response time.

Code	Name	Range	Default	Modification
F6-06	DI1 delay time	0.0s ~ 3600.0s	0.0s	☆
F6-07	DI2 delay time	0.0s ~ 3600.0s	0.0s	☆
F6-08	DI3 delay time	0.0s ~ 3600.0s	0.0s	☆
F6-09	DI4 delay time	0.0s ~ 3600.0s	0.0s	☆

After the terminal detects the input signal, it will respond after a delay of this time.

It is used to set the valid state mode of the digital input terminal.

0: When selected as active high level, it is valid when the corresponding DI terminal is short-circuited, and invalid when disconnected.

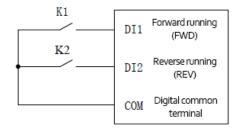
Code	Name	Range	Default	Modification
		0: Active high		*
		1: Active low		
		Units digit: DI1	0	
F6-10	DI terminal active	Tens digit: DI2		
	Thousands digit:	Hundreds digit: DI3		
		Thousands digit: DI4		
		Ten Thousands digit: DI5		

1: When selected as active low level, the corresponding DI terminal is invalid when short-circuited, and valid when disconnected.

number of digits	Ten Thousands digit	Thousand s digit	Hundreds digit	Tens digit	Units digit
Defaults	0	0	0	0	0
Corresponding terminal	DI5	DI4	DI3	DI2	DI1

Code	Name	Range	Default	Modification
F6-11 Terminal co		0: Two-line mode 1	0	*
	mode :	1: Two-line mode 2		
		2: Three-line mode 1		
		3: Three-line mode 2		

CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br | Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540


This parameter defines four different ways to control the inverter to run through external terminals.

Note: For the convenience of description, DI1\DI2\DI3 in the DI1-DI5 multi-function input terminals are selected as the external terminals. That is, the function of DI1\DI2\DI3 is selected by setting the value of F6-00 \sim F6-02. For details, please refer to function F6-00 \sim F6-04.

0: Two-wire mode 1: The most commonly used two-wire mode for this bit. The forward and reverse rotation of the motor is determined by DI1/DI2.

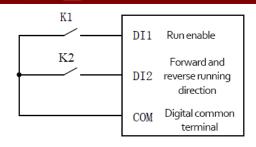
Code	Name	Setting value	Function description
F6-11	Terminal command method	0	Two-wire mode 1
F6-00	DI1 terminal function selection	1	Forward running FWD
F6-01	DI2 terminal function selection	2	Reverse running REV

K1	K2	Run command	
1	0	Forward running	
0	1	Reverse running	
1	1	Stop	
0	0	Stop	

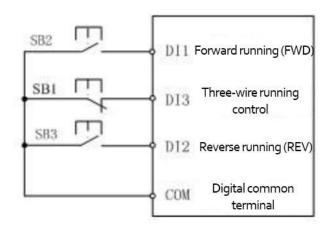
Two-wire mode

In this control mode, when K1 is closed, the inverter rotates forward, and when K2 is closed, the inverter rotates reversely. K1/K1 are closed or disconnected at the same time, and the inverter stops running.

0: Two-wire type 2: In this mode, the DI1 terminal is the running enable terminal, and the DI2 function is to confirm the running direction.


Code	Name	Setting value	Function description
F6-11	Terminal command method	1	Two-wire mode 2
F6-00	DI1 terminal function selection	1	Run enable
F6-01	DI2 terminal function selection	2	Forward and reverse running direction

K1	K2	Run command
0	0	Stop
0	1	Stop
1	0	Forward running
1	1	Reverse running



Two-wire mode 2

In this mode, when K1 is closed, K2 disconnects the forward drive of the inverter, and K2 closes the inverter in reverse. K1 is disconnected, and the inverter stops running.

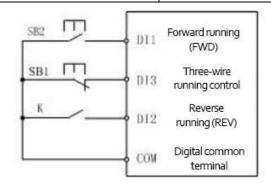
2: Three-wire mode 1, in this mode, the D3 terminal is the enable terminal, and the direction is controlled by DI1/DI2 respectively. The settings are as follows:

Code	Name	Setting value	Function description
F6-11	Terminal command method	2	three-wire 1
F6-00	DI1 terminal function selection	1	Forward running FWD
F6-01	DI2 terminal function selection	2	Run REV in reverse
F6-02	DI3 terminal function selection	3	Three-wire running control

Three-wire mode 1

In this control mode, when the SB1 button is in the closed state, press the SB2 button, the inverter will run forward, and press the SB3 button, the inverter will run reversely.

When the SB1 button is disconnected, the inverter stops. During normal start-up and operation, the SB1 button must be kept in the closed state, and the command of the SB2/SB3 button will take effect in the closing action, and the operating state of the inverter is subject to the last status of the three buttons.



3: Three-wire mode 2: In this mode, DI3 is the enable terminal, the running command is given by the DI1 terminal, and the direction is determined by the state of DI2. The settings are as follows:

Code	Name	Setting value	Function description
F6-11	Terminal command method	3	three-wire 1
F6-00	DI1 terminal function selection	1	run enable
F6-01	DI2 terminal function selection	2	Forward and reverse running direction
F6-02	DI3 terminal function selection	3	Three-wire enable operation

K	Running Direction	
0	Forward running	
1	Reverse running	

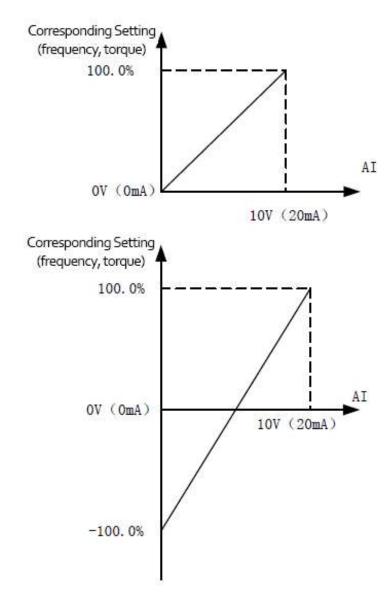
As shown in the figure above, in this control mode, when the SB1 button is closed, press the SB2 button to run the inverter, K disconnects the inverter to run forward, K closes the inverter to reverse; the inverter stops when the SB1 button is disconnected. During normal startup and operation, the SB1 button must be kept closed, and the command of the SB2 button will take effect at the edge of the closing action.

Code	Name	Range	Default	Modification
F6-12	Terminal UP/DOWN change rate	0.001Hz/s ~ 65.535Hz/s	1.000Hz/s	☆

It is used to set the change amount of the frequency per second when the UP/DOWN function is long-pressed to adjust the frequency.

Code	Name	Range	Default	Modification
F6-13	AI curve 1 minimum input	0.00V ~ F6-15	0.00V	☆
F6-14	AI1 curve minimum input corresponding setting	-100.0% ~ +100.0%	0.0%	☆
F6-15	AI curve 1 maximum input	F6-13 ~ +10.00V	10.00V	☆
F6-16	AI1 curve maximum input corresponding setting	-100.0% ~ +100.0%	100.0%	☆
F6-17	AI1 filter time	0.00s ~ 10.00s	0.10s	☆

When the analog input voltage is less than "AI curve 1 minimum input F6-13", the setting value of F6-23 will be selected according to the AI lower than the minimum input setting, and it will be determined that AI is equal to the "set AI curve 1 minimum input corresponding setting" F6-13, 100% corresponds to 10V, 0% corresponds to


0V" or "0%".

When the analog input voltage is greater than "AI curve 1 maximum input F6-15", it is determined that AI is equal to "set AI curve 1 maximum input corresponding to setting F6-16. When the analog input is current, 1mA current is equivalent to 0.5V voltage. .

AI1 input filter time is used to set the software filter time of AI1. When the on-site analog quantity is easily disturbed, please increase the filter time so that the detected analog quantity tends to be stable. If you want to slow down, how to set it needs to be considered according to the actual application.

In other applications, the 100.0% of the analog setting corresponds to the nominal value with different meanings, please refer to the description of each application section for details.

The following figure shows two typical settings:

Code	Name	Range	Default	Modification
F6-18	AI2 curve minimum input	0.00V ~ F6-20	0.00V	☆

SIE	BRATEC			ELETRÔNICA
F6-19	AI2 curve minimum input corresponding setting	-100.0% ~ +100.0%	100.0%	☆
F6-20	AI2 curve maximum input	F6-18 ~ +10.00V	2.80V	☆
F6-21	AI2 curve maximum input corresponding setting	-100.0% ~ +100.0%	0.0%	☆
F6-22	Potentiometer filter time	0.00s ~ 10.00s	0.10s	☆

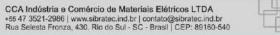
The same as the explanation of AI curve 1.

Code	Name	Range	Default	Modification	Code
		Units digit	AI1 curveselection		
	-23 AI curve selection	1	Curve 1 (2 points, see F6- 13 ~ F6-16)	21	☆
F6-23		2	Curve 2 (2 points, see F6- 18 ~ F6-21)		
F0-23		3	Curve 3 (6points, see P3-04~P3-15)		
		Tens digit	AI2 curve selection (same as the unites digit)		

Set the input curve selection of AI1/2. The default 21 corresponds to the following:

Units 1 corresponds to AI1 selection curve 1 (2 points, see F6-13~F6-16)

Tens place 2 corresponds to AI2 selection curve 2 (2 points, see F6-18~F6-21)

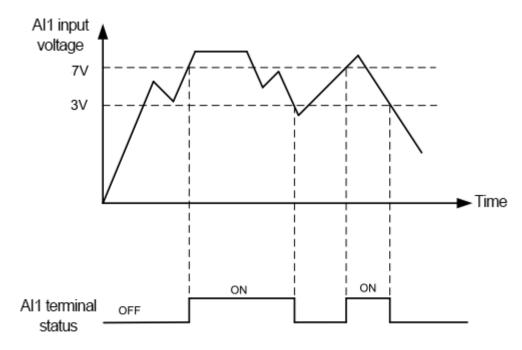

•	•		• • •	,	
Code	Name	Range	Default	Modification	Code
	Options for AI F6-24 lower than	Units digit	Option for AI1 lower than the minimum input setting		
		0	Minimum input setting		
F6-24		1	0.0%	00	
	minimum input	Tens digit	AI2 is lower than the minimum input setting selection (same as the unites digit)	00	☆

It is set that when AI is less than the minimum value in the curve, it is determined that AI is equal to "corresponding to the minimum input setting" or "0%".

The units/tens from low to high correspond to AI1/AI2 respectively.

Code	Name	Range	Default	Modification
F6-26	PULSE minimum input	0.00kHz ~ F6-28	0.00kHz	☆
F6-27	PULSE minimum input corresponding setting	-100.0% ~ 100.0%	0.0%	☆
F6-28	PULSE maximum input	F6-26 ~ 100.00kHz	50.00kHz	☆
F6-29	PULSE maximum input corresponding setting	-100.0% ~ 100.0%	100.0%	☆
F6-30	PULSE filter time	0.00s ~ 10.00s	0.10s	☆

Same as AI curve and AI filter time.


Code	Name	Range	Default	Modification
	AI1 terminal	0: AI1 is analog input		
F6-31	function selection	1~47: AI1 is used as DI digital input, the function is the same as F6-00	0	*
E6 22	AI1 terminal	0: Active high	0	
F6-33	function selection	1: Active low] 0	*

Function code F6-31 is to use AI1 as DI. When AI1 is used as DI, and AI1 input voltage is greater than 7V, AI1 terminal state is high level; when AI1 input voltage is lower than 3V, AI1 terminal state is low level. Hysteresis between 3V~7V.

F6-33 is used to determine when AI1 is used as DI, whether AI1 high level or low level is in valid state.

As for the function setting of AI1 as DI, it is the same as the normal DI setting, please refer to the description of the relevant DI setting of F6 group.

The following figure takes AI1 input voltage as an example to illustrate the relationship between AI1 input voltage and corresponding DI status:

6.8. F7set (Output terminal parameters)

H series inverters come standard with one multi-function analog output terminal AO, one multi-function digital output terminal DO, and one multi-function relay output terminal.

Code	Name	Range	Default	Modification
E7 00	Digital output	0: High-speed pulse output	0	- 人-
F7-00	selection	1: Normal digital output	U	×

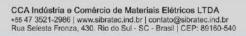
The DO output terminal is a high-speed pulse output terminal or an open-collector terminal multiplexing port. When set to high-speed pulses, the output is high-frequency pulses up to 100kHz.

As an open-collector common digital output, its function is set by F7-02. When used as high-speed pulse output, its function is set by F7-04.

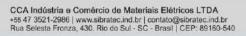
Code	Name	Default	Modification
F7-01	RELAY1 output function selection	0	☆
F7-02	DO output function selection	1	☆

These multi-function terminals are described as follows:

Code	Name	Function description
0	0: High-speed pulse output	The output terminal has no function.
1	1: Normal digital output	Indicates that the inverter is in the running (RUN) state.
2	2: Fault output (for coast to stop fault)	Indicates that the inverter has an output fault, and the fault level is coast to stop (cut off the output).
3	3: Frequency level detection FDT1 output	
4	4: Frequency reached	Indicates that the absolute value of the output frequency reaches the set value of F9-20.
5	5: Running at zero speed (no output when inverter stops)	Indicates that the inverter is in RUN state and the output frequency is 0Hz. Although the output frequency is also 0Hz during shutdown, this function terminal will not take effect.
6	6: Motor overload pre-alarm	When the motor overload protection is turned on and the motor load exceeds the set value of the motor overload warning coefficient F8-02, the output is valid.
7	7: Inverter overload pre-alarm	10s before the inverter overload protection action, the output becomes valid.
8	8: Set count value reached	In the counting function, when the count value reaches the set count value FD-08, the output becomes valid.
9	9: Designated count value reached	In the counting function, when the count value reaches the specified count value FD-09, the output becomes valid.
10	10: Length reached	In the fixed length function, when the actual length FD-06 exceeds the set length FD-05, the output becomes valid.
11	11: PLC cycle completed	When the PLC completes a cycle, the output becomes valid, and becomes invalid after 250ms.
12	12: Accumulated operation time reached	When the "accumulated running time FA-07" reaches the value set by "set running time F9-16", the output becomes valid.
13	13: Frequency being limited	When the given frequency exceeds the upper limit frequency or the lower limit frequency, and the actual frequency exceeds the upper limit frequency or the lower limit frequency (that is, in the swing frequency limit), the output is valid.
14	14: Torque being limited	When the inverter runs in the speed control mode, the output is valid when the output torque reaches the upper limit of the speed control torque or the speed deviation exceeds 2Hz.
15	15: Operation ready	When the power supply of the main circuit and control circuit of the inverter has been stabilized, and the inverter has detected any fault information, the inverter is in a running state (that is, there is no fault, no undervoltage), and the output is valid.



	16	16: Upper limit frequency	When the running frequency is greater than the upper limit
•		reached	frequency F0-11, the output is valid.
		17: Lower limit frequency	When the "set frequency is lower than the lower limit
	17	reached (operation related)	frequency running action F9-14" is set to "0: lower limit frequency operation" or "2: zero speed operation", when the
ı	1/		running frequency is lower than the lower limit frequency F0-
			12, the output is valid.
		18: Undervoltage status output	When the "set frequency is lower than the lower limit
			frequency running action F9-14" is set to "1: stop", the terminal
	18		always keeps the output invalid. When the output frequency is
1	10		less than the lower limit frequency during acceleration, the
			output is valid
	10	19: Communication settings	When the inverter is in the state of input undervoltage, the
ı	19		output is valid.
		20: Operation at zero speed	The terminal state is given by communication.
	20	signal 2 (also output when	, , , , , ,
•	•	operation stops)	
	21	21: Accumulated power-on time	Indicates that the inverter is in the running (RUN) state and the
1	21	reached	output frequency is OHz or there is no output when stopped.
		22: Frequency level detection	When the "cumulative power-on time FA-09" reaches the set
	22	FDT2	value of "set power-on arrival time F9-15", the output becomes
			valid.
		23: Frequency 1 reached	Indicates that the output frequency of the inverter is within the
	23		range of "arbitrary arrival frequency detection value 1 F9-23" ±
1	25		("maximum frequency F0-09" × "arbitrary arrival frequency
			detection width 1 F9-24").
		24: Frequency 2 reached	Indicates that the output frequency of the inverter is within the
	24		range of "arbitrary arrival frequency detection value 1 F9-23" ±
•			("maximum frequency F0-09" × "arbitrary arrival frequency
		25. C	detection width 2 F9-26").
		25: Current 1 reached	Indicates that the output current of the inverter is within the range of "arbitrary arrival current 1 F9-31" ± ("motor rated")
	25		current F3-02" × "arbitrary arrival current 1 detection width F9-
			32").
		26: Current 2 reached	Indicates that the output current of the inverter is within the
	24		range of "arbitrary arrival current 2 F9-33" ± ("motor rated
	26		current F3-02" × "arbitrary arrival current 2 detection width F9-
			34").
		27: Time out	When the timing function selection F9-35 is set to 1 to be valid,
	27	<u>'</u>	the output is valid when the "current running time F9-39"
	•		reaches the given value of "timed running time F9-36".
		28: Al1 input overloaded	When the AI1 input voltage exceeds the range of "AI1 input
	28	·	voltage protection value lower limit F9-40" ~ "Al1 input voltage
			protection value upper limit F9-41", the output is valid.
		29: Load dropping	When the drop-load protection is turned on (F8-51 select 1 is
	29		valid), and the load is so small that the drop-load detection is
			triggered, the output is valid.
	30	30: Reverse running	Indicates that the inverter is running in reverse, and the output
			U/V/W is in reverse order.
	31	31: Zero current state	When the output current of the inverter is less than the set


		value of "zero current detection level F9-27" and the duration exceeds the set value of "zero current detection delay time F9-28", the output is valid.
32	32: Module temperature reached	Indicates that the value of the heat sink temperature FA-06 is greater than the value set by "Module temperature reaches F9-38".
33	33: Output current limit exceeded	When the output current of the inverter is greater than the set value of "output current over-limit F9-29" and the duration exceeds the set value of "output current over-limit detection delay time F9-30", the output is valid.
34		The output is valid when the running frequency value is less than the lower limit frequency F0-12 or when it stops.
35	35: Alarm (all faults)	When the inverter is faulty and the fault level is to continue running, the output is valid.
36	36: Operation Times Up	When the current running time is greater than the "current running arrival time setting"
37		Indicates that the inverter has an output fault (excluding input undervoltage fault), and the fault level is coast to stop (cut off the output).

Code	Name	Default	Modification
F7-03	AO output function selection	0	☆
F7-04	High-speed pulse output function selection	0	☆

These multi-function terminals are described as follows:

Code	Name	Function description
0	0: Operating frequency	0Hz ~ maximum frequency F0-09
1	1: Set frequency	0Hz ~ maximum frequency F0-09
2	2: Output current	0 ~ 2 times the rated current of the motor
3	3: Output torque (absolute value of torque)	0 ~ 2 times the rated torque of the motor
4	4: Output power	0 ~ 2 times motor rated power
5	5: Output voltage	0 ~ 1.2 times the rated voltage of the inverter
6	6: PULSE input (100.0% corresponds to 100.0kHz)	0.01kHz ~ 100.00kHz
7	7: Al1	0V ~ 10V (0~20mA)
8	8: AI2 (keyboard rotary potentiometer)	0V ~ 10V
9	9: Length	0 ~ set length FD-05
10	10: count value	0 ~ Set count value FD-08
11	11: Communication settings	0 ~ 100% output value given by communication command
12	12: Motor speed	0 ~ Speed corresponding to the maximum frequency F0-09
13	13: Output current (100.0% corresponds to 1000.0A)	0.0A ~ 1000.0A
14	14: Output voltage (100.0% corresponds to 1000.0V)	0.0V ~ 1000.0V

15

15: Output torque (actual torque value)

(actual | -2×motor rated torque ~ 2×motor rated torque

Code	Name	Range	Default	Modification
F7-05	Maximum frequency of high- speed pulse output	0.01KHz~100.00KHz	50.00KHz	☆

When the DO1 terminal is set to high-speed pulse, you can set the corresponding frequency when the high-speed pulse output is 100% through this function code.

Code	Name	Range	Default	Modification
F7-06	AO bias coefficient	-100.0% ~ +100.0%	0.0%	☆
F7-07	AO gain	-10.00 ~ +10.00	1.00	☆

This function code is generally used to correct the zero drift of the analog output and the deviation of the output amplitude. It can also be used to customize the required analog output curve

The calculation relation takes AO1 as an example:

y1 represents the minimum output voltage or current value of AO1; y2 represents the maximum output voltage or current value of AO1

 $y1 = 10V \text{ or } 20mA \times F7-06 \times 100\%;$

 $y2 = 10V \text{ or } 20mA \times (F7-06 + F7-07);$

The factory default value of F7-06 = 0.0%, F7-07 = 1, so the output $0\sim10V$ (or $0\sim20mA$) corresponds to the minimum value of the physical quantity represented by the maximum value of the physical quantity represented.

Example 1:

Change $0\sim$ 20mA output to $4\sim$ 20mA

The minimum input current value by the formula: $y1 = 20mA \times F7-06 \times 100\%$,

 $4 = 20 \times F7-06$, calculated according to the formula F7-09 = 20%;

The maximum input current value by the formula: $y2=20mA \times (F7-06 + F7-07)$;

 $20=20 \times (20\% + F7-07)$, calculated according to the formula F7-07 = 0.8

Example 2:

Change $0\sim10V$ output to $0\sim5V$

The minimum input voltage value by the formula: $y1 = 10 \times F7-06 \times 100\%$,

 $0=10 \times F7-06$, calculated according to the formula F7-06 = 0.0%;

The maximum input voltage value by the formula: $y2=10 \times (F7-06 + F7-07)$;

 $5=10 \times (0 + F7-07)$, calculated according to the formula F7-07 = 0.5

Code	Name	Default	Modification
F7-08	AO output filter time	0.000s~1.000s	☆

If there is a large AO fluctuation and the output needs to be relatively stable, the filter time can be appropriately increased; the longer the filter time, the slower the AO response time.

Code	Name	Range	Default	Modification
F7-10	RELAY1 output	0.0s ~ 3600.0s	0.0s	☆

CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

SIE	BRATEC			ELETRÔNICA
F7-11	DO output delay time	0.0s ~ 3600.0s	0.0s	☆

Set the action delay time of the output terminal, the time from the trigger state to the actual output becoming valid.

Code	Name	Range	Default	Modification
	DO output valid state selection	0: Positive logic		
F7 12		1: Inverse logic	00	
F7-12		Units digit: RELAY1	00	☆
		Tens digit: DO1		

Set the logic state of the output terminal, such as RELAY, the positive logic is normally open, and it is closed when it is valid; the negative logic is normally closed, and it is disconnected when it is valid.

6.9. F8 set (Fault and protection, accelerated overcurrent)

Code	Name	Range	Default	Modification
F8-00	Motor overload protection selection	0: Disable 1: Enable	1	☆
F8-01	Motor overload protection gain	0.20 ~ 10.00	1.00	☆

F8-00 Motor overload protection options:

Select whether to enable the overload protection of the inverter to the motor.

If the motor overload protection is turned off, the motor may be overloaded and damaged. It is recommended to install a thermal relay or other motor overheat protection circuit.

F8-01 Motor overload protection gain:

Motor overload time = typical time of motor overload curve × motor overload protection factor

For example, the 145% overload time of the motor is 300s. If you want to modify it to 180s, then F8-01 needs to be modified as: 180/300 = 0.6.

Typical value of motor overload curve							
Current multiple	1.15	1.25	1.35	1.45	1.55	1.65	1.75
Overload time (sec)	4800	2400	900	300	120	120	120

Code	Name	Range	Default	Modification
F8-02	Motor overload warning coefficient	50% ~ 100%	80%	☆

This coefficient represents that the motor is in the overload state, after the accumulated time of motor overload reaches the percentage of the trigger time of motor overload protection, the motor overload warning state is set, and the function terminal can be used as the warning output.

Code	Name	Range	Default	Modification
F8-07	Power-on ground short-circuit protection options	0: Disable 1: Enable	1	☆

Select whether the inverter detects output short circuit to ground when power on. If it is valid, there will be a voltage output at the output end of the inverter after power-on.

Code	Name	Range	Default	Modification
------	------	-------	---------	--------------

CCA Indústria e Comércio de Materiais Elétricos LTDA +55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

SIE	BRATEC			ELETRÔNICA
F8-08	Automatic fault reset times	0 ~ 20	0	☆
F8-09	Fault during automatic fault reset	0: Operation halt	0	☆
	Relay action selection	1: Operation		, ,
F8-10	Automatic fault reset interval time	0.1s ~ 100.0s	1.0s	☆

F8-08 Fault automatic reset times:

When the inverter fails, it can be automatically reset (equivalent to the RST button function). When the number of automatic resets exceeds the set value, the inverter will keep the fault status when it encounters a fault again. F8-09 Fault relay action selection during automatic fault reset:

After set to action, the function terminal set as fault state output will be set to valid state in case of failure, and will return to invalid state after automatic reset.

After it is set to no action, during the fault and automatic reset process, the function terminal of the fault status output always remains in the invalid state.

F8-10 fault automatic reset interval:

Set the delay time of automatic reset after the fault state occurs. During this period, the inverter remains in the fault state.

Code	Name	Range	Default	Modification
F8-12	Output phase loss protection option	0: Disable 1: Enable	1	☆

Select whether to detect the output phase loss status. If this function is turned off, the inverter will continue to work when the inverter output phase is missing. At this time, the output current may be greater than the displayed current, which is a risk.

If this function is turned on, when the inverter detects that the output phase is missing, the inverter will report the E13/A13 fault, and perform the protection action according to the setting of the fault protection action.

Code	Name	Default	Modification
F8-13	Type of first fault	-	•
F8-14	Type of second fault	-	•
F8-15	Type of third (latest) fault	-	•

Check the fault types as follows:

Fault type	Function	Fault type	Function
0	0: No fault	20	20: Abnormal Parameter reading and writing
1	1: Wave-by-wave current limiting fault	21	21: Inverter hardware abnormal
2	2: Acceleration overcurrent	22	22: Ground short circuit of motor
3	3: Deceleration overcurrent	23	23: Running time reached
4	4: Constant speed overcurrent	24	24: User-defined fault 1
5	5: Acceleration overvoltage	25	25: User-defined fault 2

6	6: Deceleration overvoltage	26	26: Power-on time reached
7	7: Constant speed overvoltage	27	27: Offload
8	8: Buffer resistor overload	28	28: PID feedback lost during operation (frequency source)
F9	9: Undervoltage	29	29: The speed deviation is too large (the deviation between the given and the feedback)
10	10: Inverter overload	30	30: Motor overspeed
11	11: Motor overload	31	31: Inverter unit protection
12	12: Input phase loss	32	32: Code disc failure
13	13: Output phase loss	33	33: Motor over temperature fault
14	14: The module overheated	34	34: SVC stall fault
15	15: External fault	35	35: Magnetic pole position detection failed
16	16: Communication abnormal	36	36: UVW signal feedback error
17	17: Contactor abnormal	37	37: Point-to-point slave failure
18	18: Abnormal current detection	38	38: Braking resistor short circuit
19	19: Abnormal motor tuning	39	39: Switch the motor while running

Code	Name	Default	Modification
F8-16	Frequency at the third (latest) fault	-	•
F8-17	Current at the third (latest) fault	-	•
F8-18	Bus voltage at the third (latest) fault	-	•
F8-19	Input status at the third (latest) fault	-	•
F8-20	Output status at the third (latest) fault	-	•
F8-21	Inverter status at the third (latest) fault	-	•
F8-22	Power-on time at the third (latest) fault	-	•
F8-23	Operation time at the third (latest) fault	-	•
F8-24	Frequency at the second fault	-	•
F8-25	Current at the second fault	-	•
F8-26	Bus voltage at the second fault	-	•
F8-27	Input status at the second fault	-	•
F8-28	Output status at the second fault	-	•
F8-29	Inverter status at the second fault	-	•
F8-30	Power-on time at the second fault	-	•
F8-31	Operation time at the second fault	-	•
F8-32	Frequency at the first fault	-	•
F8-33	Current at the first fault	-	•
F8-34	Bus voltage at the first fault	-	•
F8-35	Input status at the first fault	-	•
F8-36	Output status at the first fault	-	•
F8-37	Inverter status at the first fault	-	•
F8-38	Power-on time at the first fault	-	•
F8-39	Operation time at the first fault	-	•

The above can view various information at the time of failure.

Code	Name	Range	Default	Modification	Code
		Units digit	Motor overload (11)		
		0	Coast to stop		
		1	Stop by shutdown sequence	00000	
		2	Continue operation		
		Tens digit	Input phase loss(12)		☆
F8-40	action selection 1 dig	Hundreds digit	Output phase loss (E13) (As same as the units digit)		
		Thousands digit	External failure (E15) (As same as the units digit)		
		Ten Thousands digit	Communication abnormal (E16) (As same as the units digit)		

Code	Name	Range	Default	Modification	Code
		Units digit	Function code reading and writing abnormal (20)		
		0	coast to stop		
		1	Stop by shutdown sequence		☆
		Tens digit	Operation time reached (E23) (As same as the F8-40 units digit)	00000	
F8-41	action selection 2	Hundreds digit	User-defined fault 1(E24) (As same as the F8-40 units digit)		
		Thousands digit	User-defined fault 2(E25) (As same as the F8-40 units digit)		
		Ten Thousands digit	Power-on time reach(E26) (As same as the F8-40 units digit)		

Code	Name	Range	Default	Modification	Code
		Units digit	Offload(E27) (As same as the F8-40 units digit)		
		Tens digit	PID feedback lost during operation (E28) (As same as the F8-40 units digit)	00000	☆
	Fault protection action selection 3		The speed deviation is too large (E29) (same as F8-40 units digit) (currently 2.2kW VFD not available)		
			Thousands digit	Motor overspeed (E30) (same as F8-40 units	

SIBRATEC			ELETRÔNICA
		digit) (currently 2.2kW VFD not available)	
	Ten	Magnetic pole position detection failure (E35)	
	Thousands digit	(same as F8-40 units digit) (currently 2.2kW VFD not available)	

Code	Name	Range	Default	Modification	Code
	Fault protection action selection 4	Units digit	Code disc fault (E32) (same as F8-40 units digit) (currently 2.2kW VFD not available)	00000	☆
		Tens digit	Reserved		
F8-43		Hundreds digit	Reserved		
		Thousands digit	Reserved		
		Ten Thousands digit	Reserved		

Coast to stop: The inverter displays fault code E** and stops directly, and the motor coasts to stop.

Stop according to the stop mode: the inverter displays the fault code A^{**} , stops according to the set stop mode, and displays the fault code E^{**} after the stop.

Continue to run: The inverter displays the fault code A** and continues to run. The state of continued running is determined by the setting value of the frequency selection F8-45 when the fault occurs.

Code	Name	Range	Default	Modification	
	Frequency selection for continuous operation in spite of	0: Current operating frequency			
		. ,	1: Set frequency	0	☆
F8-45			2: Upper limit frequency		
	faults	3: Lower limit frequency			
		4: Abnormal standby frequency			

- 0: Run at the fault frequency.
- 1: Run at the frequency given by the frequency source F0-06.
- 2: Run at the frequency given by the upper limit frequency source F0-10.
- 3: Run at the frequency given by the lower limit frequency F0-12.
- 4: Run at the frequency given by the abnormal standby frequency F8-46.

Code	Name	Range	Default	Modification
F8-46 a	Abnormal backup	0.0% ~ 100.0%	100.00/	
	frequency	(100.0% corresponding to F0-09)	100.0%	☆

100.0% corresponds to the maximum frequency F0-09.

Code	Name	Range	Default	Modification
	Instantaneous F8-47 failure tolerance	0: Invalid	1	*
F8-47		1: Decelerate		
functi	function selection	2: Decelerate to stop		

In the event of an instantaneous power failure or a sudden drop in voltage, the inverter reduces the output speed to compensate the decrease in the DC bus voltage of the inverter with the load feedback energy, so as to keep the inverter running.

There are three state options: 0-invalid; 1-deceleration; 2-deceleration to stop

When the selection of 0 is invalid, the voltage is lower than the undervoltage of the inverter, and the inverter directly reports the undervoltage fault;

When selecting 1 to decelerate, and the voltage is lower than the set value of F8-50, the inverter decelerates to keep the bus voltage constant until it runs at 0Hz;

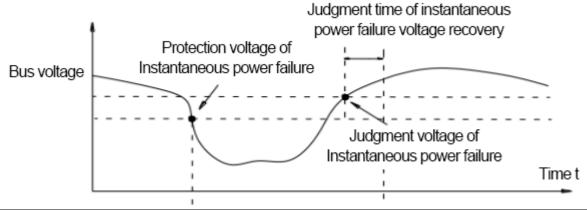
When selecting 2 to decelerate, the voltage is lower than the set value of F8-50, the inverter decelerates to stop, and the time of deceleration process is given by the setting of instantaneous stop non-stop time F8-60.

Code	Name	Range	Default	Modification
F8-48	Voltage set for suspending operation in case of instantaneous failure	80.0% ~ 100.0%	85.0%	*
F8-49	Voltage recovery waiting time for continuing operation in case of instantaneous failure	0.00s ~ 100.00s	0.50s	*
F8-50	Voltage set for continuing operation in case of instantaneous failure	60.0% ~ 100.0%(Standard bus voltage)	80.0%	*

The reference voltage of the instantaneous power failure and non-stop pause action voltage and the judgment voltage are the rated bus voltage (single-phase: 311Vdc, three-phase: 540Vdc).

When the bus voltage drops to the set value of F8-50, the inverter enters the logic of instantaneous stop and non-stop operation.

When the bus voltage rises back to the set value of F8-48, the inverter stops the instantaneous stop and nonstop action (that is, stops frequency reduction), and after delaying the time of F8-49, the inverter exits the instantaneous stop non-stop working logic, and returns to run at a given frequency.


Instantaneous power failure non-stop voltage recovery judgment time F8-49 is to prevent the inverter from repeatedly entering and exiting the instantaneous power failure non-stop logic when the input voltage is unstable, thereby setting a certain hysteresis time.

Code	Name	Range	Default	Modification
E0 E1	Offload protection	0: Disable	0	
F8-51	options	1: Enable	U	☆

After this function is turned on, when the output current of the inverter is less than the set value of F8-52 of the load loss detection level, and the duration is longer than the set time of the load loss detection time F8-53, the inverter will report the E27/A27 fault, and the fault will be protected according to the fault. Action setting performs protection action.

Code	Name	Range	Default	Modification
F8-52	Offload detection level	0.0% ~ 100.0%	10.0%	☆

Load loss detection current, when the output current of the inverter is less than this set value, it will determine the load loss, and 100% corresponds to the rated current of the motor.

Code	Name	Range	Default	Modification
F8-53	Offload detection time	0.0s ~ 60.0s	1.0s	☆

During the load loss detection time, if the load returns to above the set value of F8-52, the inverter will automatically return to the given frequency to run.

Code	Name	Range	Default	Modification
F8-54	Overspeed detection value	0.0% ~ 50.0% (Maximum frequency)	20.0%	☆
EO EE	Overspeed	0.0s: No detection	1.00	
F8-55	detection time	0.1 ~ 60.0s	1.0s	☆

When the inverter detects that the actual speed of the motor exceeds $(1 + F8-54) \times$ maximum frequency F0-09, and the duration exceeds the set value of the overspeed detection time F8-55, the inverter will report E30 and act according to the fault protection set to perform protection action.

If F8-55 is set to 0.0s, the over-speed detection function is closed.

Code	Name	Range	Default	Modification
F8-56	Excessive speed deviation detection value	0.0% ~ 50.0% (Maximum frequency)	20.0%	☆
F8-57	Excessive speed	0.0s: No detection	5.0s	❖

SIBRATE		ELETRÓNICA
deviation detection	0.1 ~ 60.0s	

When the inverter detects that the absolute value of the difference between the actual speed of the motor and the given speed exceeds $F8-56 \times maximum$ frequency F0-09, and the duration speed deviation is too large to detect the given value of F8-57, the inverter will Report E30, and perform protection action according to the setting of fault protection action.

If F8-57 is set to 0.0s, the detection function of excessive speed deviation is disabled.

Code	Name	Range	Default	Modification
F8-58	Deceleration to stop Kp	0~100	30	*
F8-59	Deceleration to stop Ki	0.0~300.0	20.0	*

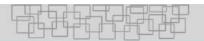
If the instantaneous power failure does not stop in the working state of "1: Deceleration", it is easy to trigger undervoltage, and Kp&Ki can be appropriately increased.

Code	Name	Range	Default	Modification
F8-60	Time setting of Deceleration to stop	0~6500.0s	10.0s	☆

Set the deceleration time during which the momentary stop does not stop in the working state of "2: Deceleration to stop".

6.10. F9 set(Auxiliary function parameters)

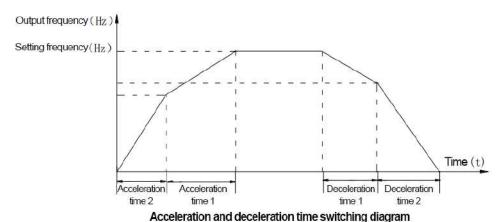
Code	Name	Range	Default	Modification
F9-00	Jog operation frequency	0.00Hz ~ Maximum frequency (F0-09)	5.00Hz	☆
F9-01	Jog acceleration time	0.0s ~ 6500.0s	20.0s	☆
F9-02	Jog deceleration time	0.0s ~ 6500.0s	20.0s	☆


Define the given frequency and acceleration/deceleration time of the inverter when jogging (this time is the time from 0Hz to accelerate to the maximum frequency F0-09).

During jogging operation, the starting method is fixed as direct start, and the stop method is fixed as deceleration stop.

The jog operation can be performed through the terminals.

, - , - , - , - , - , - , - , - , -	ne jog operation can be performed amough the terminals.			
Code	Name	Range	Default	Modification
F9-03	Acceleration time 2	0.0s ~ 6500.0s	Model determination	☆
F9-04	Deceleration time 2	0.0s ~ 6500.0s	Model determination	☆
F9-05	Acceleration time 3	0.0s ~ 6500.0s	Model determination	☆
F9-06	Deceleration time 3	0.0s ~ 6500.0s	Model determination	☆
F9-07	Acceleration time 4	0.0s ~ 6500.0s	Model determination	☆



SIBRATEC Model determination F9-08 Deceleration time 4 0.0s ~ 6500.0s Model determination ☆

Same as acceleration/deceleration time 1.

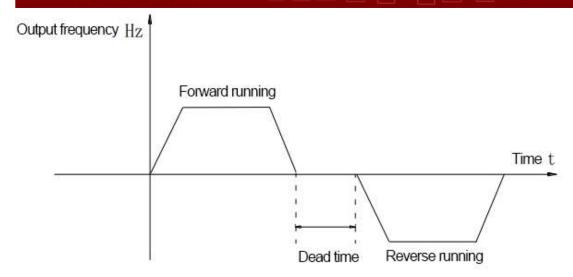
Code	Name	Range	Default	Modification
F9-09	Acceleration time 1,2 switching frequency point	0.00Hz ~ Maximum frequency (F0-09)	0.00Hz	☆
F9-10	Deceleration time 1,2 switching frequency point	0.00Hz ~ Maximum frequency (F0-09)	0.00Hz	☆

It is used to select different acceleration and deceleration times according to the operating frequency range instead of through the DI terminal during the acceleration and deceleration process of the inverter. As shown below.

CodeNameRangeDefaultModificationF9-11Terminal jog priority0: Disable 1: Enable0☆

When the jog priority is turned on, if there is a terminal jog command during operation, the inverter will switch to the terminal jog running state.

Code	Name	Range	Default	Modification
F9-12	Forward and reverse dead time	0.0s ~ 3000.0s	0.0s	\Rightarrow


Set the time to keep the output state at 0Hz during the forward/reverse switching process.

Forward and Reverse Dead Time Diagrams

Code	Name	Range	Default	Modification
F9-13	Reverse control	0: Enable 1: Disable	0	☆

Set whether to allow reverse rotation of the inverter. In the state of prohibiting reverse rotation, when the inverter receives a reverse direction running command or a given frequency command of <0Hz, it will change to 0Hz output.

Code	Name	Range	Default	Modification
F9-14	Action when the set frequency is lower than lower limit frequency	O: Continue operation at lower limit frequency Stop operation Continue operation at zero speed	0	☆

It is used to select the frequency that the inverter can output when the given frequency is less than the lower limit frequency F0-12.

Code	Name	Range	Default	Modification
F9-15	Power-on time limit	0h ~ 65000h	0h	☆
F9-16	Operation time limit	0h ~ 65000h	0h	☆

See DO terminal function explanation F7-03.

Code	Name	Range	Default	Modification
F9-17	Protection feature option	0: Disable 1: Enable	0	$\overset{\wedge}{\Rightarrow}$

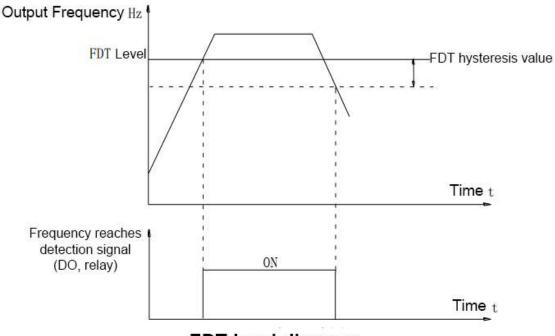
This parameter relates to the safety protection function of the inverter. If this feature is enabled:

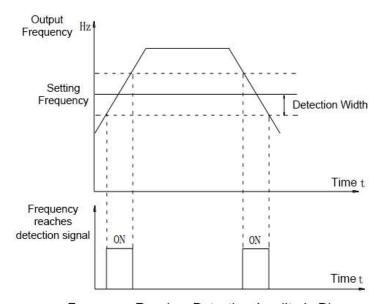
If the running command is valid when the inverter is powered on (for example, the terminal running command is closed before power-on), the inverter will not respond to the running command, and the running command must be removed once, and the inverter will respond after the running command is valid again.

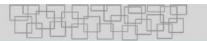
If the running command is valid at the time of inverter fault reset, and the inverter does not respond to the running command, the running command must be removed to eliminate the running protection state.

Code	Name	Range	Default	Modification
F9-18	Frequency detection value (FDT1)	0.00Hz ~ Maximum frequency (F0-09)	50.00Hz	☆
F9-19	Frequency detection hysteresis value	0.0% ~ 100.0% (FDT1 level)	5.0%	☆
F9-20	Reached frequency detection range	0.0% ~ 100.0% (Maximum frequency F0-09)	0.0%	☆
F9-21	Frequency detection value (FDT2)	0.00Hz ~ Maximum frequency	50.00Hz	☆
F9-22	Frequency detection hysteresis value (FDT2)	0.0% ~ 100.0% (FDT2 level)	5.0%	☆

When the running frequency is higher than the frequency detection value, the frequency detection value trigger is valid, and when the frequency is lower than the frequency detection value \times (1 - frequency lag value), the frequency detection value trigger is invalid.

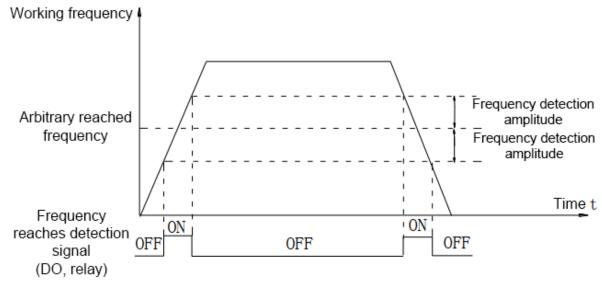

When the running frequency reaches the \pm (maximum frequency F0-09 × frequency arrival detection amplitude) range of the target frequency, the frequency arrival trigger takes effect. As shown below.




FDT level diagram

Frequency Reaches Detection Amplitude Diagram

Code	Name	Range	Default	Modification
F9-23	Arbitrary reached frequency detection value 1	0.00Hz ~ Maximum frequency	50.00Hz	☆
F9-24	Arbitrary reached frequency detection width 1	0.0% ~ 100.0% (Maximum frequency F0-09)	0.0%	☆
F9-25	Arbitrary reached frequency detection value 2	0.00Hz ~ Maximum frequency	50.00Hz	☆

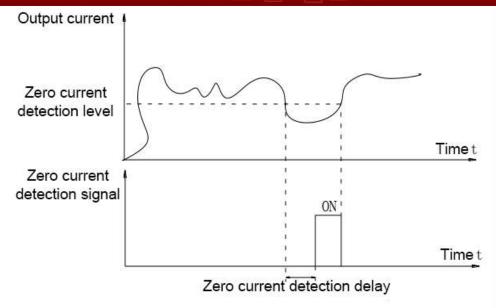


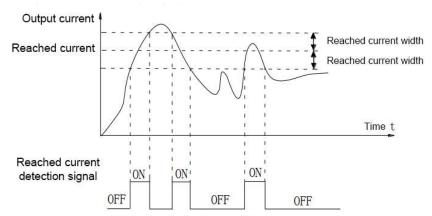
SIE	BRATEC			ELETRÔNICA
F9-26	Arbitrary reached frequency detection width 2	0.0% ~ 100.0% (Maximum frequency F0-09)	0.0%	☆

The output frequency is valid within the range of "arbitrary arrival frequency detection value" \pm ("maximum frequency F0-09" \times "arbitrary arrival frequency detection width").

Arbitrary reached frequency detection diagram

Code	Name	Range	Default	Modification
F9-27	Zero current detection level	0.0% ~ 300.0% 100.0% corresponding to motor rated current	5.0%	☆
F9-28	Zero current detection delay time	0.01s ~ 600.00s	0.10s	☆


When the output current of the inverter is less than the set value of "zero current detection level F9-27" and the duration exceeds the set value of "zero current detection delay time F9-28", it is valid.



Zero Current Detection Diagram

Code	Name	Range	Default	Modification
F9-29	The output current exceeds the limit	0.0% (No detection) 0.1% ~ 300.0% ((Motor rated current F3-02)	200.0%	☆
F9-30	Output overcurrent detection delay time	0.00s ~ 600.00s	0.00s	☆

When the output current of the inverter is greater than the set value of "output current over-limit F9-29" and the duration exceeds the set value of "output current over-limit detection delay time F9-30", the output is valid.

Reached Current Detection Diagram

Code	Name	Range	Default	Modification
F9-31	Arbitrary reached current 1	0.0% ~ 300.0%(Motor rated current F3-02)	100.0%	☆
F9-32	Arbitrary reached current 1 width	0.0% ~ 300.0%(Motor rated current F3-02)	0.0%	☆
F9-33	Arbitrary reached current 2	0.0% ~ 300.0%(Motor rated current F3-02)	100.0%	☆



CCA Indústria e Comércio de Materiais Elétricos LTDA
+55 47 3521-2986 | www.sibratec.ind.br | contato@sibratec.ind.br
Rua Selesta Fronza, 430. Rio do Sul - SC - Brasil | CEP: 89160-540

	SIE	RATEC			ELETRÓNICA
F9-	-34	Arbitrary reached current 2 width	0.0% ~ 300.0%(Motor rated current F3-02)	0.0%	☆

Indicates that the output current of the inverter is within the range of "arbitrary reached current 1 F9-31" \pm ("motor rated current F3-02" \times "arbitrary reached current 1 detection width F9-32").

Reached Current Detection Diagram

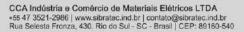
Code	Name	Range	Default	Modification
F9-35	Timer feature option	0: Disable 1: Enable	0	*

Select whether to enable the timing operation function.

		<u> </u>		
Code	Name	Range	Default	Modification
		0: F9-37 setting		
		1: AI1		
F9-36	Timer operation time selection	2: AI2 (Rotary potentiometer)	0	*
	anie selection	Analog input range corresponds to F9-37		
F9-37	Timer counting time selection	0.0Min ~ 6500.0 Min	0.0Min	*

"Current running time F9-39" reaches the given value of "timed running time F9-36", and the output is valid.

Code	Name	Range	Default	Modification
F9-38	Module temperature limit	0°C~ 100°C	75 °C	☆


If the value of the heat sink temperature FA-06 is greater than this set value, the corresponding function terminal is valid.

Code	Name	Range	Default	Modification
F9-39	Current operation time limit	0.0 ~ 6500.0 Min	0.0Min	*

When the running time of the inverter reaches this time, the corresponding function terminals are valid.

Code	Name	Range	Default	Modification
F9-40	AI1 input voltage	0.00V ~ F9-41	3.10V	☆
F9-41	Lower limit of protection value	F9-40 ~ 10.00V	6.80V	☆

Check whether the AI1 voltage is within the set range. If it is not within the limit, the corresponding function terminal is valid.

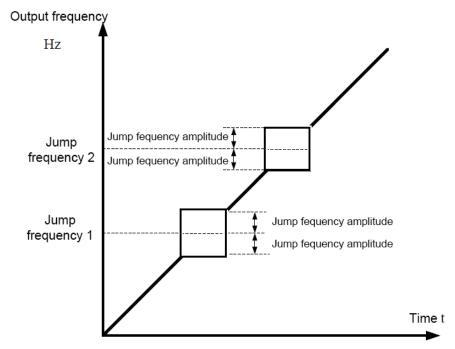
Code	Name	Range	Default	Modification
F9-42	AI1 input voltage	0: Fan runs during operation 1: Fan keeps running	0	☆

Fan operation mode selection: 0 means running all the time; 1 means running when running, and the radiator temperature drops below 40°C after shutdown and stops running.

Code	Name	Range	Default	Modification
F9-43	Upper limit of protection value	Sleep frequency (F9-45) ~ Maximum frequency (F0-09)	0.00Hz	☆
F9-44	Cooling fan control	0.0s ~ 6500.0s	0.0s	☆
F9-45	Wake up frequency	0.00Hz ~ Wake-up frequency (F9-43)	0.00Hz	☆
F9-46	Wake-up delay time	0.0s ~ 6500.0s	0.0s	☆

Sleep and wake up

- 1. When the given frequency is lower than the sleep frequency, it will enter the sleep state, regardless of whether there is a running command, it will enter the stop state
- 2. When the given frequency is higher than the wake-up frequency, it will respond to the running command. That is, when there is a running command, enter the running state
- 3. When there is a running command for the first time, it is higher than the sleep frequency, and it should also respond to the running command.
- 4. The switch between sleep and wake-up has a delay, which is determined by the function code "Wakeup Delay Time" and "Sleep Delay Time".



Code	Name	Range	Default	Modification
F9-47	Output power factor	0.0~200.0	100.0	☆

When the displayed value of output power deviates from the actual measured value, this coefficient can be adjusted for correction.

Code	Name	Range	Default	Modification
F9-48	Jump frequency	0: Disable	0	
F9-40	enable	1: Enable	U	☆
F9-49	Jump Frequency 1	0.00Hz \sim Maximum frequency (F0-09)	0.00Hz	☆
F9-50	Jump Frequency 2	0.00Hz \sim Maximum frequency (F0-09)	0.00Hz	☆
F9-51	Jump range	0.00Hz \sim Maximum frequency (F0-09)	0.00Hz	☆

The frequency skip function can skip the set frequency during operation and avoid the mechanical resonance point.

6.11. FA set (Keyboard and display parameters)

Code	Name	Range	Default	Modification
FA-00	QUICK/JOG key function	O: QUICK/JOG disabled 1: Switch between operation panel command channel and remote command channel (terminal command channel or communication command channel) 2: Forward and reverse switching 3: Forward jog 4: Reverse jog	0	*

The QUICK/JOG key is a multi-function key, and the function of the QUICK/JOG key can be set through the function code. It can be controlled by this button during shutdown

- 0: This button has no function.
- 1: Switch between keyboard commands and remote operations.

Refers to the switching of the command source, that is, the switching between the current command source and keyboard control (local operation). If the current command source is keyboard control,

Then this key function is invalid.

2: Forward and reverse switching

Use the QUICK/JOG key to switch the direction of the frequency command. This function is only valid when the command source is the operation panel command channel.

3: Forward jog

Forward jog control is realized through the QUICK/JOG key.

4: Reverse jog

The reverse jog control is realized by the QUICK/JOG key.

Code	Name	Range	Default	Modification
FA-01	STOP/RST key function	0: Only in keyboard operation mode, the stop function of STOP/RST key is enabled	1	\$
	Tunction	1: In any operation mode, the stop function of the STOP/RST key is enabled		

There are two types of STOP/RESET key function options:

0: Only in the keyboard operation mode, the stop function of this key is valid.

1: In any operation mode, the stop function of this key is valid.

Code	Name	Range	Default	Modification
		0000 ~ FFFF		
	LED display	Bit00: Operation frequency 1 (Hz)		
FA-02		Bit01: Set frequency (Hz)	003F	☆
		Bit02: Bus voltage (V)		
		Bit03: Output voltage (V)		

SIBRATEC		ELETRÓNICA
	Bit04: Output current (A)	
	Bit05: Output power (kW)	
	Bit06: Output torque (%)	
	Bit07: DI input status	
	Bit08: DO output status	
	Bit09: AI1 voltage (V)	
	Bit10: AI2 voltage (V)	
	Bit11: Count value	
	Bit12: Length value	
	Bit13: Load speed display	
	Bit14: PID setting	
	Bit15: PID feedback	

 $0000 \sim$ FFFF: If the above parameters need to be displayed during operation, set the corresponding position to 1, convert the binary number to hexadecimal and set it in this parameter.

Bit00~Bit15: For example, the operating frequency 1(Hz), DI input status, and count value are turned on, and the rest are turned off. Corresponding to BIT00/07/12, the binary value is 0001 0000 1000 0001, and the hexadecimal value is 1081. Set it to 1081.

Code	Name	Range	Default	Modification
		0000 ~ FFFF		
		Bit00: PLC stage		
		Bit01: PULSE input pulse frequency (kHz)		
		Bit02: Operation frequency 2 (Hz)		
		Bit03: Remaining operation time		
		Bit04: Linear speed		☆
	LEDLED display	Bit05: Current power-on time (Hour)	0000	
		Bit06: Current running time (Min)		
FA-03	parameters 2 for	Bit07: PULSE input pulse frequency (Hz)		
	operation mode	Bit08: Communication setting value		
		Bit09: Main frequency X display (Hz)		
		Bit10: Auxiliary frequency Y display (Hz)		
		Bit11: Target torque value		
		Bit12: Power factor angle	-	
		Bit13: VF separation target voltage (V)		
		Bit14: VF separation output voltage (V)		
		Bit15: Actual feedback speed (Hz)		

 $0000 \sim$ FFFF: If you need to display the above parameters during operation, set the corresponding position to 1, convert the binary number to hexadecimal and set it in this parameter.

Bit00~ Bit15: Display parameter 1 in the same operation.

Code Name Range Default Modification

SIBRATEC $0001 \sim FFFF$ Bit00: Set frequency (Hz) Bit01: Bus voltage (V) Bit02: DI input status Bit03: DO output status Bit04: AI1 voltage (V) LED display FA-04 0033 parameters for stop ☆ Bit05: AI2 voltage (V) mode Bit06: Count value Bit07: Length value Bit08: PLC stage Bit09: Load speed Bit10: PULSE input pulse frequency (kHz)

 $0001\sim$ FFFF: If you need to display the above parameters during operation, set the corresponding position to 1, convert the binary number to hexadecimal and set it in this parameter.

Bit00∼ Bit10: Display parameter 1 in the same operation.

Code	Name	Range	Default	Modification
FA-05	Load speed display coefficient	0.0001 ~ 6.5000	1.0000	☆

Through this parameter, adjust the corresponding relationship between the output frequency of the inverter and the load speed. Use with FA-08.

Code	Name	Range	Default	Modification
FA-06	Inverter module radiator temperature	0.0°C ~ 100.0°C	-	•

Displays real-time inverter temperature.

Code	Name	Range	Default	Modification
FA-07	Cumulative operation time	0h ~ 65535h	-	•

Displays the accumulated running time of the inverter.

Code	Name	Ran ge	Default	Modification	Code
	Load speed display decimal places	units digit 0	Load speed display U0-14 decimal places 0 decimal digit		
		2	1 decimal digit 2 decimal digits		
FA-08		3	3 decimal digits	21	☆
		Tens digit	Feedback speed U0-19, actual feedback speed U0-34 display decimal places		
		1	1 decimal place		
		2	2 decimal place		

Used to set the number of decimal places for display of load speed.

If the load speed display coefficient FA-05 is 3.000, the decimal point of the load speed FA-08 is 0 (0 decimal point), and when the inverter running frequency is 40.00Hz, the load speed is: 40.00*3.000 = 120 (0 decimal point) show).

If the inverter is in the stop state, the load speed will be displayed as the speed corresponding to the set frequency, that is, "set load speed". Taking the set frequency of 50.00Hz as an example, the load speed in the shutdown state is: 50.00*3.000 = 150 (0 decimal point display)

Code	Name	Range	Default	Modification
FA-09	Accumulated power-on time	0 ~ 65535h	-	
FA-10	Accumulated power consumption	0 ~ 65535kW/h	-	
FA-11	Product code	-	-	•
FA-12	Software version number	-	-	•
FA-13	Modbus protocol version	-	-	•

6.12. FB set (Control optimization parameters)

Code	Name	Range	Default	Modification
FB-00	DPWM switching upper limit frequency	0.00Hz ~ 15.00Hz	12.00Hz	☆

For VF mode, after running to this set frequency, switch from SVPWM seven-segment continuous modulation to SVPWM five-segment discontinuous debugging.

Code	Name	Range	Default	Modification
ED 01	PWM modulation method	0: Asynchronous modulation	0	☆
FB-01		1: Synchronous modulation		

For the VF mode, when the carrier frequency divided by the operating frequency is less than 10, it will cause the output current to oscillate or the current harmonics are large. At this time, it can be adjusted to synchronous modulation to reduce the current.

When the output frequency is lower (below 100Hz), synchronous modulation is generally not required, because the ratio of the carrier frequency to the output frequency is relatively high at this time, and the advantages of asynchronous modulation are more obvious.

Synchronous modulation takes effect only when the operating frequency is higher than 85Hz, and asynchronous modulation is fixed below this frequency.

Code	Name	Range	Default	Modification
		0: Random PWM is invalid		
FB-02	Random PWM	1 ~ 10: PWM carrier frequency random depth	0	☆

Setting random PWM can soften the monotonous and harsh motor sound and help reduce external electromagnetic interference. Adjusting the random PWM with different depths will get different effects.

Code	Name	Range	Default	Modification
- D 00	Dead zone	0: Disable		
FB-03	compensation mode selection	1: Enable	1	☆

Modifying this value is not recommended.

Code	Name	Range	Default	Modification
FB-05	Wave-by-wave	0: Disable	4	
FB-05	current limit enable	1: Enable	1	☆

Whether to enable the hardware wave-by-wave current limiting function, the wave-by-wave current limiting can avoid overcurrent faults of the inverter to a certain extent.

Code	Name	Range	Default	Modification
FB-07	Undervoltage point	Single-Phase models: 140.0 ~ 400.0V	Model	4
1 0-07	setting	Three-Phase models: 200.0 ~ 2000.0V	determination	×
FB-08	Overvoltage point	Single-Phase models: 150.0 ~ 410.0V	Model	A
LD-00	setting	Three-Phase models: 200.0 ~ 2500.0V	determination	*

Modifying this value is not recommended.

Code	Name	Range	Default	Modification
FB-09	SVC optimization	0: Not optimized	2	+

SIBRATEC		ELETRÔNICA
mode selection	1: Optimization mode 1	
	2: Optimization mode 2	

The selection of optimization mode is controlled under SVC, and modification is not recommended.

6.13. FC set (PID function parameters)

The PID function is a commonly used method for process control. By calculating the difference between the proportional gain Kp, the integral time Ti, the differential time Td and the set target and feedback value, the output frequency of the inverter is controlled at a stable target value. In the PID algorithm, the acceleration and deceleration time is limited by the acceleration and deceleration time 1.

Code	Name	Range	Default	Modification
		0: FC-01 setting		
	PID set-point source	1: AI1		☆
50.00		2: AI2 (Keyboard rotary potentiometer)	0	
FC-00		3: PULSE pulse (DI5)		
		4: Communication		
		5: Multi-step instruction		

Used to select the PID target value given channel. 100% corresponds to the set value of the PID given feedback range FC-04.

	_			
FC-01	PID value set-point	0.0% ~ 100.0%	50.0%	☆

PID value is given, corresponding to FC-00, select 0. 100% corresponds to the set value of PID given feedback range FC-04.

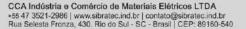
		0: AI1		
FC-02	PID feedback source	1: PULSE pulse setting (DI5)	0	☆
		2: Communication setting		

Used to select the given channel of PID feedback value. 100% corresponds to the set value of the PID given feedback range FC-04.

_					
	EC 03	PID action direction	0: Forward	0	
	FC-03		1: Reverse	U	\bowtie

0: Given source > feedback source, the running frequency should rise; given source < feedback source, the running frequency should decrease; given source = feedback source, the running frequency should remain unchanged.

1: Given source>feedback source, the operating frequency should decrease; given source<feedback source, the operating frequency should increase; given source=feedback source, the operating frequency should remain unchanged.


FC-04	PID set-point feedback range	0 ~ 65535	1000	☆

Given the ranges of the source and feedback source, this value corresponds to 100% of the displayed value.

	-		
FC-05 Proportional gain Kp1	0.0 ~ 1000.0	20.0	☆

PID1 parameter: proportional coefficient.

SIE	BRATEC			ELETRÔNICA	
FC-06	Integration time Ti1	0.01s ~ 10.00s	2.00s	☆	
PID1 paran	PID1 parameter: integral coefficient.				
FC-07	Differential time Td1	0.000s ~ 10.000s	0.000s	☆	
PID1 parameter: differential coefficient.					
FC-08	PID reverse cutoff frequency	0.00 ~ Maximum frequency (F0-09)	2.00Hz	☆	

After PID calculation, the output frequency may be a negative value (that is, the inverter reverses rotation). In some cases where reverse rotation is not allowed or the reverse rotation is too fast, this function code can be used to set the upper limit of the reverse rotation frequency to limit.

If the PID inversion cut-off frequency is set to 0 or the inversion is prohibited, the output range is from the upper limit frequency to the lower limit frequency.

If the PID inversion cut-off frequency is not set to 0 or the inversion is not prohibited, the output range is the upper limit frequency \sim the negative inversion cut-off frequency.

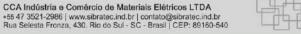
FC-09	PID deviation limit	0.0% ~ 100.0%	0.0%	☆
-------	---------------------	---------------	------	---

When the deviation between the PID given amount and the feedback amount is less than FC-09, the PID will stop adjusting. Avoid the output frequency fluctuation when the given amount and the feedback amount are close.

	FC-10	PID differential limit	0.00% ~ 100.00%	0.10%	☆		
L	Limit the effect of PID differential to avoid system oscillation.						
	FC-11	PID set-point change time	0.00 ~ 650.00s	0.00s	☆		

PID given change time, refers to the time required for PID given value to change from 0.0% to 100.0%. When the PID given changes, the PID given value changes linearly according to the given change time to reduce the adverse effect of the sudden change of the given on the system.

FC-12	PID feedback filter time	0.00 ~ 60.00s	0.00s	☆


Filter the feedback amount to avoid the output adjustment fluctuation caused by the disturbance fluctuation of the feedback amount, the larger the system response speed, the slower.

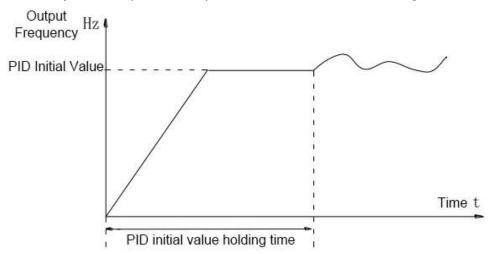
FC-13	PID output filter time	0.00 ~ 60.00s	0.00s	☆
-------	------------------------	---------------	-------	---

Filter the output calculated by PID to avoid sudden change of frequency. The larger the value, the slower the system response speed.

system res	ponse speed.				
FC-15	Proportional gain Kp2	0.0 ~ 100.0	20.0	☆	
PID2 paran	PID2 parameter: proportional coefficient.				
FC-16	Integration time Ti2	0.01s ~ 10.00s	2.00s	☆	
PID2 paran	neter: integral coeffic	ient.		_	
FC-17	Differential time Td2	0.000s ~ 10.000s	0.000s	☆	
PID2 parameter: differential coefficient.					
FC-18	PID parameter switching	0: Never	0		
		1: Switch via DI terminal		☆	

SIBRATEC conditions 2: Automatically switch according to deviation

When set as multi-function DI terminal switching, the multi-function terminal function selection is to be set (PID parameter switching terminal, when the terminal is invalid, select parameter group 1, when the terminal is valid, select parameter group 2.


When set to automatic switching, when the absolute value of the deviation between the reference and the feedback is less than the PID parameter switching deviation 1, the PID parameter selects parameter group 1. When the absolute value of the deviation between the reference and the feedback is greater than the PID switching deviation 2, the PID parameter selection selects parameter group 2. When the deviation between reference and feedback is between switching deviation 1 and switching deviation 2, the PID parameters are the linear interpolation values of two sets of PID parameters.

FC-19	PID parameter switching deviation 1	0.0% ~ FC-20	20.0%	☆
FC-20	PID parameter switching deviation 2	FC-19 ~ 100.0%	80.0%	☆

Set to 2 with the PID parameter switching condition: it is used when switching automatically according to the deviation, and 100% corresponds to the maximum deviation between the given and feedback.

FC-21	PID initial value	0.0% ~ 100.0%	0.0%	☆
FC-22	PID initial value holding time	0.00 ~ 650.00s	0.00s	$ \Leftrightarrow $

When the inverter starts, the PID output is fixed at the PID initial value, and the PID starts the closed-loop adjustment operation only after the PID initial value holding time.

PID Initial Value Function Diagram

FC-23	The maximum deviation between two PID outputs	0.00% ~ 100.00%	1.00%	☆
FC-24	The minimum deviation between two PID outputs	0.00% ~ 100.00%	1.00%	☆

To limit the difference between two beats of PID output, it is used to restrain the PID output from changing too fast and make the inverter run more stable.

		Units digit	integral separation		
		0	invalid		
		1	Effective		
FC-25	PID integral properties	Tens digit	Whether to stop integration after output reaches limit	00	☆
		0	Continue		
		1	Stop		

Integral separation: If the integral separation is set to be valid, when the multi-function digital terminal DI integral pause is valid, the PID integral stop operation. At this time, only the proportional and differential actions of the PID are valid. When the integral separation selection is invalid, regardless of whether the multi-function digital terminal DI is valid or not, the integral separation is invalid.

Whether to stop the integration after the output reaches the limit value: After the PID operation output reaches the maximum or minimum value, you can choose whether to stop the integration. If you choose to stop the integration, the PID integration will stop calculating at this time, which may help to reduce the overshoot of the PID.

FC-26	PID feedback loss detection value	0.0%: No feedback loss detection 0.1% ~ 100.0%	0.0%	☆
FC-27	PID feedback loss detection time	0.0s ~ 20.0s	0.0s	☆

This function code is used to judge whether the PID feedback is lost. When the PID feedback amount is less than the feedback loss detection value, and the duration exceeds the PID feedback loss detection time, the inverter will alarm the fault PID loss, and handle it according to the selected fault handling method.

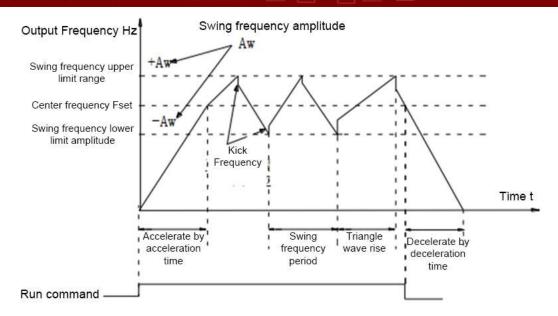
		0: No operation when the inverter stops		
FC-28	PID operation mode	1: Proceed operation when the inverter	0	☆
		stops		

It is used to select whether the PID continues to operate in the PID stop state. In general applications, the PID should stop computing in the stop state.

6.14. FD set (Swing frequency, fixed length and counting parameters)

It is used in textile, chemical fiber and other occasions where traversing and winding functions are required. The output frequency swings up and down at the set center frequency.

Code	Name	Range	Default	Modification
ED 00	Swing frequency	0: Relative to the center frequency	0	
FD-00	setting	1: Relative to the maximum frequency] 0	☆


To determine the reference value of the swing frequency, there are two setting methods: 0-relative to the center frequency; 1-relative to the maximum frequency.

Swing Working Diagram

FD-01	Swing frequency amplitude	0.0% ~ 100.0%	0.0%	☆
-------	---------------------------	---------------	------	---

When the amplitude is relative to the center frequency, the swing amplitude AW = frequency source F0-06 \times swing amplitude FD-01. When setting the swing amplitude relative to the maximum frequency, swing amplitude AW = maximum frequency F0-09 \times swing amplitude FD-01. Wobble frequency running frequency range = upper limit frequency \sim lower limit frequency.

FD-02	Kick frequency	0.0% ~ 50.0%	0.0%	☆
_	amplitude			

The kick frequency amplitude is the percentage of the kick frequency relative to the swing amplitude when the swing frequency is running, namely: kick frequency = swing amplitude AW \times kick frequency amplitude.

If the swing is selected relative to the center frequency, the kick frequency is the change value. If the swing is selected relative to the maximum frequency, the kick frequency is a fixed value. The wobble operating frequency is constrained by the upper limit frequency and the lower limit frequency.

	FD-03	Swing frequency period	0.1s ~ 3000.0s	10.0s	☆			
١	Wobble Period: The time value of a complete Wobble period.							
	FD-04	Triangular wave rise	0.1% ~ 100.0%	50.0%	ĄĄ			

FD-04 | time of swing | $0.1\% \sim 100.0\%$ | 50.0% | 50.0% | 50.0% | The triangular wave time coefficient is the time percentage of the triangular wave rising time relative to the

wobble frequency period FD-03.

Triangular wave rise time = wobble frequency period \times wobble frequency triangle wave time, in seconds.

Triangular wave falling time = wobble frequency period \times (1 - wobble frequency triangle wave time), the unit is second.

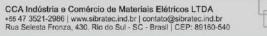
FD-05	Set length	0m ~ 65535m	1000m	☆
FD-06	Actual length	0m ~ 65535m	0m	☆

SIE	BRATEC			ELETRÔNICA
FD-07	Number of pulses per meter	0.1 ~ 6553.5	100.0	☆
Used for fix	ked length control, us	ed with power terminals.		
FD-08	Set count value	1 ~ 65535	1000	☆
FD-09	Designated count value	1 ~ 65535	1000	☆

Used for counting control, used with function terminals.

6.15. FE set (Multi-segment instruction, simple PLC parameters)

Code	Name	Range	Default	Modification
FE-00	Multi-segment command 0	-100.0% ~ 100.0%	0.0%	☆
FE-01	Multi-segment command 1	-100.0% ~ 100.0%	0.0%	☆
FE-02	Multi-segment command 2	-100.0% ~ 100.0%	0.0%	☆
FE-03	Multi-segment command 3	-100.0% ~ 100.0%	0.0%	☆
FE-04	Multi-segment command 4	-100.0% ~ 100.0%	0.0%	☆
FE-05	Multi-segment command 5	-100.0% ~ 100.0%	0.0%	☆
FE-06	Multi-segment command 6	-100.0% ~ 100.0%	0.0%	☆
FE-07	Multi-segment command 7	-100.0% ~ 100.0%	0.0%	☆
FE-08	Multi-segment command 8	-100.0% ~ 100.0%	0.0%	☆
FE-09	Multi-segment command 9	-100.0% ~ 100.0%	0.0%	☆
FE-10	Multi-segment command 10	-100.0% ~ 100.0%	0.0%	☆
FE-11	Multi-segment command 11	-100.0% ~ 100.0%	0.0%	☆
FE-12	Multi-segment command 12	-100.0% ~ 100.0%	0.0%	☆
FE-13	Multi-segment command 13	-100.0% ~ 100.0%	0.0%	☆
FE-14	Multi-segment command 14	-100.0% ~ 100.0%	0.0%	☆
FE-15	Multi-segment command 15	-100.0% ~ 100.0%	0.0%	☆


When the frequency source is multi-speed or LC given, the frequency value of the Nth speed.

		0: Stop at the end of a single operation		
FE-16	PLC operation mode	1: Stop at the end a single operation and keep the end value	0	☆
		2: Repeat operation		

0: After PLC cycle once, stop output.

1: After PLC cycle once, keep the last output frequency as output.

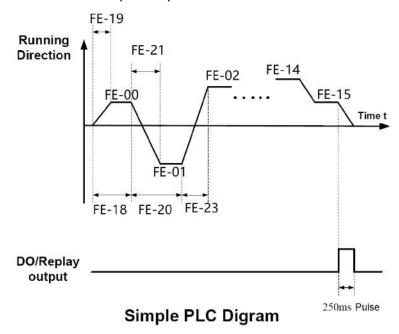
2: PLC repeats the cycle.

		Units digit	Memory save option for Power-down		
		0	Don't save		
FF 17	PLC power down	1	Save	00	
	memory selection	Tens digit	Memory save option for shutdown	00	☆
		0	Don't save		
		1	Save		

After the inverter is powered off, and then powered on again, whether to memorize the last running segment number.

FE-18	PLC segment 0 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-19	PLC section 0 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-20	PLC segment 1 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-21	PLC section 1 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-22	PLC segment 2 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-23	PLC section 2 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-24	PLC segment 3 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-25	PLC section 3 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-26	PLC segment 4 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-27	PLC section 4 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-28	PLC segment 5 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-29	PLC section 5 acceleration and deceleration time	0 ~ 3	0	☆

SIE	BRATEC			ELETRÓNICA
	selection			
FE-30	PLC segment 6 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-31	PLC section 6 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-32	PLC segment 7 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-33	PLC section 7 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-34	PLC segment 8 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-35	PLC section 8 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-36	PLC segment 9 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-37	PLC section 9 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-38	PLC segment 10 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-39	PLC section 10 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-40	PLC segment 11 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-41	PLC section 11 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-42	PLC segment 12 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-43	PLC section 12 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-44	PLC segment 13 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆



SIE	BRATEC			ELETRÔNICA
FE-45	PLC section 13 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-46	PLC segment 14 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-47	PLC section 14 acceleration and deceleration time selection	0 ~ 3	0	☆
FE-48	PLC segment 15 execution time selection	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
FE-49	PLC section 15 acceleration and deceleration time selection	0 ~ 3	0	☆

The running time of the Nth stage speed, including the acceleration/deceleration process from the previous stage. The acceleration and deceleration time settings of the Nth terminal running 0~3 correspond to the acceleration and deceleration time 1~4 respectively.

FE-50	PLC operation time unit	0: s (second) 1: h (hour)	0	☆
-------	-------------------------	----------------------------	---	---

The unit selected for the run time of the Nth stage of the PLC.

There are many kinds of given sources for multi-segment instruction 0, which can switch between multi-segment instruction and other given sources.

	Multi-segment	0: Function code FE-00		
FE-51	command 0 set-	1: AI1	0	☆
	point options	2: AI2 (keyboard rotary potentiometer)		

SIBRATEC		ELETRÔNICA
	3: PULSE pulse	
	4: PID	
	5: Set by preset frequency (F0-01) and adjustable using UP/DOWN keys	

6.16. FF set (Function code management parameters)

Code	Name	Range	Default	Modification
FF-00	User password	0 ~ 65535	0	☆

If any non-zero number is set, the password protection function will take effect. The next time you enter the menu, you must enter the correct password, otherwise you cannot view and modify the function parameters, please keep in mind the set user password. Setting FF-00 to 0 will clear the set user password and make the password protection function invalid.

		0: No operation		
	Parameter	1: Restore parameters to factory values, except motor parameters		
FF-01 initialization		2: Clear recorded data	0	*
		4: Backup user's current parameters		
		5: Restore to user's backup parameters		

- 1: Restore the factory settings, excluding motor parameters: After setting FF-01 to 1, most of the inverter function parameters are restored to the factory default parameters, but the motor parameters, frequency command decimal point, fault record information, accumulated running time, The cumulative power-on time and cumulative power consumption will not be restored.
- 2: Clear record information: Clear the inverter fault record information, accumulative running time, accumulative power-on time and accumulative power consumption.
- 3: Backup current user parameters: Backup the parameters set by the current user. Set the current value of all function parameters.
- 4: Restore the user parameters backed up before.

		Units digit: U set display		
		0: Disable		
FF-02	Function parameter	1: Enable	4.4	
FF-02	set display options	Tens digit: P set display	11	☆
		0: Disable		
		1: Enable		

Ones place: hide or show U0. Tens place: hide or display P0~P7.

		Units digit: User-defined parameter set display	- 00	
FF 03	Customized	0: Disable		☆
FF-03	parameter set display selection	1: Enable		
		Tens digit: User-modified parameter set display		

SIE	RATEC		ELETRÔNICA
		0: Disable	
		1: Enable	

Units digit: Select whether to display -SCUT after pressing the QUICK/JOG key, and select the function code that can enter the P4 group to set the corresponding function code.

Tens place: Select whether to display -DIFF after pressing the QUICK/JOG key, and select function codes that can enter all non-default values.

	FF-04	Parameter	0: Parameters can be modified	0	٨
FF-04	protection	1: Only this parameter can be modified	U	×	

Select whether user parameters can be modified.

6.17. P0 set (Communication parameters)

Code	Name	Range	Default	Modification	
		0: 300BPS		Fault Modification 5 ★	
		1: 600BPS			
		2: 1200BPS			
		3: 2400BPS			
DO 00	David waka	4: 4800BPS	F		
P0-00	Baud rate	5: 9600BPS	5	*	
		6: 19200BPS			
		7: 38400BPS			
		8: 57600BPS			
		9: 115200BPS			

Set the baud rate of MODBUS communication.

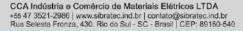
		0: No parity (8-N-2)		
DO 01		1: Even parity (8-E-1)		
P0-01		2: Odd parity (8-O-1)	U	☆
		3: No parity (8-N-1)		

Set the MODBUS communication verification method.

DO-03	Local address	0: Broadcast address	1	
P0-02		1 ~ 247	1	¥

Set the local address of MODBUS communication.

P0-03 Response dela	y 0 ~ 20ms	2	☆
---------------------	------------	---	---


The interval time from the end of the inverter data reception to the sending of data to the upper computer, the response time is less than the system processing time, which is subject to the system processing time, the longer the time, the longer the wait.

	Communication	0.0: Invalid	_	
P0-04	timeout	0.1 ~ 60.0s	0	☆

When 0.0 is set, it is invalid.

Set 0.1~60.s as a valid value. If the interval between one communication and the next communication exceeds the communication timeout time, the system will report a communication failure error.

SIE	BRATEC			ELETRÔNICA
DO 05	MODBUS	0: Non Standard MODBUS protocol	_	
P0-05	communication data format	1: Standard MODBUS protocol	1	粱
Set whether	er it is standard modb	us protocol.		
DO 06	Communication	0: 0.01A		
P0-06	reading current resolution	1: 0.1A	0	☆

The decimal place of the read current data, for example: when the actual current is 2.95A,

P0-06=0, the slave receives 01 03 00 02 02 17 CRC check.

P0-06=1, the slave receives 01 03 00 02 00 1D CRC check.

6.18. P2 set (AIAO calibration parameters)

Code	Name	Range	Default	Modification
P2-00	AI1 given voltage 1	0.500V~4.000V	Factory calibration	☆
P2-01	AI1 measured voltage 1	0.500V~4.000V	Factory calibration	☆
P2-02	AI1 given voltage 2	6.000V~9.999V	Factory calibration	☆
P2-03	AI1 measured voltage 2	6.000V~9.999V	Factory calibration	☆
P2-04	AI2 given voltage 1	0.500V~4.000V	Factory calibration	☆
P2-05	AI2 measured voltage 1	0.500V~4.000V	Factory calibration	☆
P2-06	AI2 given voltage 2	6.000V~9.999V	Factory calibration	☆
P2-07	AI2 measured voltage 2	6.000V∼9.999V	Factory calibration	☆

The AI correction function code is used to correct the analog input AI to eliminate the influence of AI input zero offset and gain.

This group of functional parameters has been calibrated before leaving the factory, and when the factory default is restored, it will be restored to the factory calibrated value. Generally, calibration is not required at the application site.

The voltage before calibration refers to the actual voltage measured by a multimeter and other measuring instruments, and the voltage after calibration refers to the displayed voltage value sampled by the inverter.

When calibrating, input two voltage values to each AI input port, and compare the value measured by the multimeter and the value read by group U0 respectively.

If the above function codes are entered accurately, the inverter will automatically correct the zero offset and gain of AI.

For the situation that the user's given voltage does not match the actual sampling voltage of the inverter, the on-site correction method can be used to make the sampling value of the inverter consistent with the expected given value. Taking AI1 as an example, the on-site correction method is as follows:

Given AI1 voltage signal (about 2V);

Measure AI1 voltage value and store it in function parameter P2-00;

Check the displayed value of U0-09 and store it in the function parameter P2-01;

Given AI1 voltage signal (about 8V);

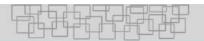
Measure AI1 voltage value and store it in function parameter P2-02;

Check the displayed value of U0-09 and store it in the function parameter P2-03.

P2-08	AO Voltage before calibration 1	0.500V~4.000V	Factory calibration	☆
P2-09	AO1 Voltage after calibration 1	0.500V~4.000V	Factory calibration	☆
P2-10	AO Voltage before calibration 2	6.000V~9.999V	Factory calibration	☆
P2-11	AO1 Voltage after calibration 2	6.000V~9.999V	Factory calibration	☆

AO calibration function code, used to calibrate the analog output AO.

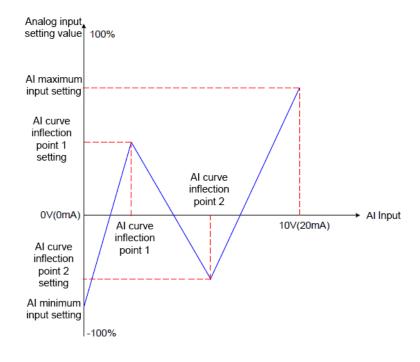
This group of functional parameters has been calibrated before leaving the factory, and when the factory default is restored, it will be restored to the factory calibrated value. Usually in application


The field does not need to be corrected.

The voltage before calibration refers to the actual output voltage value measured by a multimeter and other instruments. The corrected voltage refers to the theoretical output voltage value of the inverter.

6.19. P3 set (AI curve setting parameters)

Code	Name	Range	Default	Modification
P3-00	AI1 jumping point	-100.0% ~ 100.0%	0.0%	☆
P3-01	AI1 jump range	0.0% ~ 100.0%	0.5%	☆
P3-02	AI2 jumping point	-100.0% ~ 100.0%	0.0%	☆
P3-03	AI2 jump range	0.0% ~ 100.0%	0.5%	☆
P3-04	AI curve minimum input 3	0.00V~P3-06	0.00V	☆
P3-05	AI curve minimum input 3 corresponding setting	-100.0%~+100.0%	0.0%	☆
P3-06	AI curve setting of 3 inflection point and 1 input value	P3-04~P3-08	2.00V	☆
P3-07	AI curve setting of 3 inflection point and 1 input value setting	-100.0%~+100.0%	20.0%	☆
P3-08	AI curve setting of 3 inflection point and 2 input value	P3-06~P3-10	4.00V	☆
P3-09	AI curve setting of 3 inflection point and 2 input value setting	-100.0%~+100.0%	40.0%	☆

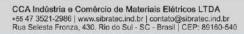

Code	Name	Range	Default	Modification	
P3-10	AI curve setting of 3 inflection point and 3 input value	P3-08~P3-12	6.00V	☆	
P3-11	AI curve setting of 3 inflection point and 3 input value setting	-100.0%~+100.0%	60.0%	☆	
P3-12	AI curve setting of 3 inflection point and 4 input value	P3-10∼P3-14	8.00V	☆	
P3-13	AI curve setting of 3 inflection point and 4 input value setting	-100.0%~+100.0%	80.0%	☆	
P3-14	AI curve maximum input 3	P3-12~+10.00V	10.00V	☆	
P3-15	AI curve maximum input 3 corresponding setting	-100.0%~+100.0%	100.0%	☆	

P3-00~P3-05:

Set the curve of AI setting value. When the AI setting value is AI jumping point \pm jumping amplitude, the AI setting value is AI jumping point.

P0-06~P3-15:

Set a 5-point curve, the curve minimum input voltage, inflection point 1, inflection point 2, inflection point 3, and the maximum input need to be increased in turn.



6.20. P4 set (User-defined function code parameters)

Code	Name	Range	Default	Modification
P4-00	User-defined function code 0		F0.10	☆
P4-01	User-defined function code 1		F0.02	☆
P4-02	User-defined function code 2		F0.03	☆
P4-03	User-defined function code 3		F0.07	☆
P4-04	User-defined function code 4		F0.08	☆
P4-05	User-defined function code 5		F0.17	☆
P4-06	User-defined function code 6		F0.18	☆
P4-07	User-defined function code 7		F3.00	☆
P4-08	User-defined function code 8		F3.01	☆
P4-09	User-defined function code 9		F4.00	☆
P4-10	User-defined function code 10		F4.01	☆
P4-11	User-defined function code 11	F0-00 ~ FF-xx	F4.02	☆
P4-12	User-defined function code 12	P0-00 ~ Px-xx U0-00 ~ U0-xx	F5.04	☆
P4-13	User-defined function code 13	, 00 00 00 7.11	F5.07	☆
P4-14	User-defined function code 14		F6.00	*
P4-15	User-defined function code 15		F6.01	*
P4-16	User-defined function code 16		F6.02	☆
P4-17	User-defined function code 17		F6.03	☆
P4-18	User-defined function code 18		F7.00	☆
P4-19	User-defined function code 19		F7.01	☆
P4-20	User-defined function code 20		F7.02	☆
P4-21	User-defined function code 21		F7.03	☆
P4-22	User-defined function code 22		FA.00	☆
P4-23	User-defined function code 23		F0.00	☆
P4-24	User-defined function code 24		F0.00	☆

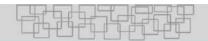
Code	Name	Range	Default	Modification
P4-25	User-defined function code 25		F0.00	☆
P4-26	User-defined function code 26		F0.00	☆
P4-27	User-defined function code 27		F0.00	☆
P4-28	User-defined function code 28		F0.00	☆
P4-29	User-defined function code 29		F0.00	☆
P4-30	User-defined function code 30		F0.00	☆
P4-31	User-defined function code 31		F0.00	☆

You can choose whether to enter the user-defined function code display through the QUICK/JOG key through FF-03.

6.21. U0 set (Monitoring parameters)

Code	Name	Units	Communication address
U0-00	Operating frequency (Hz)	Displays the theoretical running	7000H
U0-01	Setting frequency (Hz)	frequency of the inverter and the absolute value of the set frequency.	7001H
U0-02	Bus voltage (V)	Display the inverter bus voltage value	7002H
U0-03	Output voltage (V)	Display the output voltage value of the inverter during operation	7003H
U0-04	Output current (A)	Display the inverter output current value during running	7004H
U0-05	Output power (kW)	Display the output power value of the inverter during operation	7005H
U0-06	Output torque (%)	Percentage output value of motor rated torque.	7006H
U0-07	DI input status	Displays hexadecimal, and the meaning when the corresponding binary digit is 1 is as follows: BIT0:DI1 is valid BIT1:DI2 valid BIT2:DI3 is valid BIT3:DI4 is valid BIT4:DI5 is valid BIT5: AI1 is valid for DI	7007H
U0-08	DO output status	Displays hexadecimal, and the meaning when the corresponding binary digit is 1 is as follows: BIT0: relay1 is valid BIT1:DO1 is valid	7008H
U0-09	AI1 voltage (V)	AI sampling data display unit is	7009H
U0-10	Rotary potentiometer voltage(V)	voltage	700AH
U0-11	Count value	-	700BH
U0-12	Length value	-	700CH
U0-13	Load speed display	See FA-08 description for details	700DH
U0-14	PID setting	-	700EH
U0-15	PID feedback	-	700FH
U0-16	PLC stage	Displays the current stage of PLC operation	7010H
U0-17	PULSE input pulse frequency (Hz)	Display the DI5 high-speed pulse sampling frequency, the unit is 0.01KHz. It is the same data as U0-23, only the displayed unit is different.	7011H
U0-18	Feedback speed (Hz)	The ten-digit setting value of function code FA-08 indicates the number of decimal points in U0-18/U0-34.	7012H

SI	BRATEC		ELETRÔNICA
U0-19	Remaining running time	Display timed running time, remaining running time	7013H
U0-20	Line speed	Display the linear speed of DI5 high- speed pulse sampling, the unit is m/min;	7014H
U0-21	Current power-on time	According to the actual number of sampling pulses per minute and FB-07 (number of pulses per meter), calculate the linear velocity value	7015H
U0-22	Current running time	-	7016H
U0-23	PULSE input pulse frequency	-	7017H
U0-24	Communication settings	Displays the sampling frequency of DI5 high-speed pulse, the unit is 1Hz. It is the same data as U0-17, only the displayed unit is different.	7018H
U0-25	Inverter running status	Display the inverter running status information, the data definition format is as follows Binary bit Description BIT0 0: stop 1: run forward 2: Invert BIT2 0: Constant speed BIT3 1: Acceleration BIT4 0: Normal 1: Undervoltage	7019H
U0-26	Main frequency X display	Display main frequency source X frequency setting	701AH
U0-27	Auxiliary frequency Y display	Display auxiliary frequency Y frequency setting	701BH
U0-28	Target torque (%)	Display the current torque upper limit set value	701CH
U0-29	Power factor angle	Displays the current operating power factor angle	701DH
U0-30	VF separation target voltage	Displays the target output voltage and the current actual output voltage when operating in the VF separation state	701EH
U0-31	VF separation output voltage	-	701FH
U0-32	VF oscillation coefficient	Display the temperature of the inverter at this time	7020H
U0-33	Temperature	-	7021H
U0-34	Actual response speed (Hz)	Display the current fault code	7022H
U0-35	Accident details	Display main frequency source X frequency setting	7023H
U0-40	DI input status visual display	The status of each functional terminal is indicated by the on-off of the specified segment of the LED	7028H



SI	BRATEC -		ELETRÓNICA
		digital tube. Its display format is as follows:	
		DI5 DI3 DI1 DI2 DI4	
U0-41	Visual display of DO input status	The status of each functional terminal is indicated by the on-off of the specified segment of the LED digital tube. Its display format is as follows:	7029Н
U0-42	DI function status visual display 1	There are 5 digital tubes on the keyboard, and each digital tube display can represent 8 function options. The display format is as follows:	702AH
U0-43	DI function status visual display 2		702BH
U0-59			

7. Resolução de problemas

7.1. Prevenção

Este capítulo apresenta as práticas de manutenção preventiva que são vitais para manter a operação normal do inversor.

7.1.1. Inspeção periódica

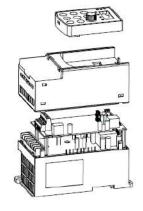
Os inversores instalados em ambiente que atenda aos requisitos apresentados neste manual, requerem apenas manutenção mínima. A tabela abaixo lista o ciclo de manutenção diária recomendado. Para mais detalhes, entre em contato conosco.

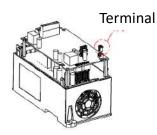
	Itens	Verificações	Método	Requisitos
Ambiente		A temperatura ambiente, umidade, vibração e presença de poeira, gás, névoa de óleo, gotículas de água, etc.	Inspeção visual e utilização de aparelhos de medição	Tem que estar de acordo com os requisitos do inversor
		Existem objetos estranhos como ferramentas e itens perigosos espalhados?	Inspeção visual	Nenhum desses itens pode estar próximo ao inversor
Display		O visor pode ser lido claramente?	Inspeção visual	Os caracteres devem ser lidos claramente
		Há algum caractere incompleto no visor?	Inspeção visual	Não podem estar anormais
		Há algum parafuso solto ou caído?	Aperte ou recoloque os parafusos	Não podem estar anormais
	Aparente	O inversor e isoladores estão deformados, rachados, quebrados ou descoloridos devido ao superaquecimento ou envelhecimento?	Inspeção visual	Não podem estar anormais
		Há poeira ou sujeira sobre o inversor?	Inspeção visual	Não podem estar anormais
	Fiação	O condutor apresenta algum sinal de descoloração ou deformação devido ao superaquecimento?	Inspeção visual	Não podem estar anormais
Circuito principal		Alguma rachadura ou descoloração na camada de isolação?	Inspeção visual	Não podem estar anormais
	Terminais	Algum dano?	Inspeção visual	Não podem estar anormais
	Resistência de frenagem	Algum cheiro peculiar devido ao superaquecimento?	Cheiro e inspeção visual	Não podem estar anormais
		Alguma desconexão?	Medição com multímetro	Os valores de resistência devem estar dentro de ±10% de seus valores padrão.
	Transformador ou reator	Alguma vibração ou coloração anormal?	Ouça, cheire e faça inspeção visual	Não podem estar anormais

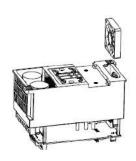
SII	BRATE			ELETRÔNICA
	Ventilador	Alguma vibração ou coloração anormal?	Ouça, faça inspeção visual, girando-o manualmente	A rotação tem que estar suave
Sistema	Veridiador	Algum parafuso solto ou caído?	Parafuse-os	Não podem estar anormais
de refrigeraç ão		Alguma descoloração devido a superaquecimento?	Inspeção visual e avaliação da vida útil	Não podem estar anormais
	Duto de ventilação	Algum objeto estranho obstrui os ventiladores, entradas de ar e saídas de exaustão bloqueadas?	Inspeção visual	Não podem estar anormais

7.1.2. Ventiladores de refrigeração

A vida útil de projeto do ventilador de refrigeração para este inversor excede 25.000 horas de operação, enquanto a vida útil real varia de acordo com o uso real e a temperatura ambiente. O tempo de serviço do inversor pode ser verificado através do parâmetro FA-07 (que é o tempo de serviço acumulado desta máquina). Um rolamento barulhento geralmente é o sinal de aviso de possíveis falhas do ventilador. Se isso acontecer com um inversor, substitua o ventilador imediatamente.


→ Leia atentamente e siga as instruções fornecidas na seção "Precauções de segurança". Ignorar qualquer um deles pode causar ferimentos pessoais ou morte ou danos ao equipamento.


Procedimento de troca do ventilador:


- 1. Pare o sistema e desligue a fonte de alimentação CA. Aguarde um tempo de 10 minutos antes de mexer.
- 2. Use uma chave de fenda para erguer o defletor do ventilador do gabinete.
- 3. Remova o teclado e a tampa frontal.
- 4. Retire o ventilador e retire o terminal de alimentação do ventilador.
- 5. Instale um novo ventilador no inversor repetindo os passos anteriores na ordem inversa.

AVISO: a direção do vento do ventilador deve ser consistente com a do inversor.

0.75kW~5.5kW: Diagrama de manutenção do ventilador

6. Ligue a fonte de alimentação

7.1.3. Capacitância dos capacitores de potência

Se o inversor não for utilizado por um período razoável, é necessário restaurar a capacitância do barramento CC antes de usá-lo de acordo com as instruções de operação. O armazenamento deve ser calculado a partir da data de entrega.

Período	Instruções
Menos de 1 ano	Não necessita de restauração da capacitância
De 1 a 2 anos	Antes de ser utilizado, o inversor precisa ficar ligado por pelo menos 1 hora.
De 2 a 3 anos	Use uma fonte de alimentação de tensão regulada ajustável para carregar o capacitor do inversor: • Aplicar 25% da tensão nominal por 30 minutos; • Aplicar 50% da tensão nominal por 30 minutos; • Aplicar 75% da tensão nominal por 30 minutos; • Por fim, aplique 100% da tensão nominal por 30 minutos.
Mais do que 3 anos	Use uma fonte de alimentação de tensão regulada ajustável para carregar o capacitor do inversor: • Aplicar 25% da tensão nominal por 2 horas; • Aplicar 50% da tensão nominal por 2 horas; • Aplicar 75% da tensão nominal por 2 horas; • Finalmente aplicar 100% da tensão nominal 2 horas.


O uso de uma fonte de alimentação de tensão ajustável para carregar o inversor deve ser criterioso. A escolha da fonte de alimentação ajustável depende da especificação da fonte de alimentação do inversor. Para inversores com tensão de entrada monofásica de 220V AC, um único regulador de tensão de 220VAC/2A é suficiente. Inversores trifásicos podem ser carregados com fonte de alimentação de regulação de tensão monofásica (L+ conecta a R, N conecta a S ou T). Como todos os capacitores de barramento CC se conectam a um mesmo retificador, eles serão carregados ao mesmo tempo. Ao carregar um inversor de alta tensão, os requisitos de tensão devem ser atendidos (como 380V). Como o carregamento do capacitor quase não requer corrente, uma fonte de alimentação de pequena capacidade (2A, por exemplo) será suficiente para a operação.

7.1.3.1. Substituição do capacitor eletrolítico

→ Leia atentamente e siga as instruções fornecidas na seção "Precauções de segurança". Ignorar qualquer um deles pode causar ferimentos pessoais ou morte ou danos ao equipamento.

Quando o capacitor eletrolítico do inversor tiver sido usado por mais de 35.000 horas de operação, eles precisam ser substituídos por novos. Para detalhes de substituição específicos, entre em contato com a SIBRATEC.

7.1.4. Cabos de potência

- Leia atentamente e siga as instruções fornecidas na seção "Precauções de segurança". Ignorar qualquer um deles pode causar ferimentos pessoais ou morte ou danos ao equipamento.
- 1. Pare o sistema e desligue a fonte de alimentação CA e aguarde um tempo.
- 2. Verifique o aperto da conexão do cabo de alimentação.
- 3. Ligue.

7.2. Solução de problemas

Os funcionários habilitados precisam de treinamento profissional em eletricidade e educação de segurança para se familiarizar com a instalação, operação e manutenção deste equipamento e o conhecimento para evitar todos os tipos de situações de emergência. Leia atentamente e siga as instruções fornecidas em "Precauções de segurança ".

7.2.1. Alarme e indicações de erro

Aqui, o indicador TC é usado para indicar eventos de falha (consulte "Processo de operação do teclado" para obter detalhes). Quando o indicador está aceso, o visor do teclado mostra um alarme ou código de falha para indicar o tipo de estado anormal. Os códigos de função F8-13 ~ F8-15 registram o tipo das três últimas falhas encontradas pelo inversor. Os códigos de função F8-16 ~ F8-23, F8-24 ~ F8-31, F8-32 ~ F8-39 registram os dados de operação do inversor quando as três últimas falhas ocorreram. Usando as informações fornecidas neste capítulo, é possível descobrir as causas da maioria dos alarmes ou falhas e, portanto, suas medidas de resolução de problemas.

7.2.2. Reset dos erros

O inversor pode ser reinicializado pressionando a tecla STOP/RST no teclado, entrada digital ou desligando a alimentação do inversor. Após a resolução de problemas, o motor pode ser reiniciado.

7.2.3. Falhas do inversor e suas medidas de solução

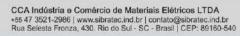
Quando ocorrer uma falha, siga as etapas abaixo para lidar com a situação:

- 1. Verifique se o teclado apresenta algum evento anormal? Em caso afirmativo, verifique os códigos de erro em seus devidos registros.
- 2. Se o teclado não mostrar nenhum sinal de anormalidade, verifique os códigos de função de F8 configurados para os parâmetros de registro de falha correspondentes para determinar o estado real quando a falha atual ocorrer.

CCA Indústria e Comércio de Materiais Elétricos LTDA

- 3. Consultando a tabela abaixo, verifique se há alguma descrição de anormalidade que corresponda à sua situação.
- 4. Tente resolver o problema ou procure ajuda de técnicos qualificados.
- 5. Após resolver o problema com sucesso, reinicie o sistema e inicie a operação.

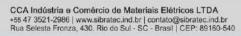
Código	Tipo	Possíveis causas	Solução
E01	Falha de limitação de corrente	A carga é muito grande ou a rotação do motor está bloqueada O inversor selecionado não tem capacidade suficiente para seu uso atual.	 Reduza a carga ou verifique as condições mecânicas do motor. Substitua por um novo inversor com maior potência nominal.
E02	Sobrecorrente na aceleração	 O circuito de saída do inversor está aterrado ou em curto-circuito. O modo de controle vetorial está selecionado, mas seus parâmetros relativos não foram ajustados corretamente. O tempo de aceleração é muito baixo. Impulso de torque manual inadequado ou seleção da curva V/F. A tensão de saída é baixa Tente ligar o motor quando ainda estiver girando. A carga aumenta repentinamente durante a aceleração. O inversor selecionado não tem capacidade suficiente. A tensão da rede está baixa. 	 Resolva problemas periféricos. Ajuste os parâmetros do motor. Aumente o tempo de aceleração. Ajuste o aumento de torque manual ou a curva V/F. Ajuste a tensão para a faixa normal. Selecione o recurso de início de rastreamento de velocidade ou espere o motor parar e, em seguida, inicie-o. Remova o que provoca a sobrecarga. Substitua por um novo inversor com maior potência nominal. Use um dispositivo de aumento de tensão para aumentar a tensão de entrada.
E03	Sobrecorrente na desaceleração	 O circuito de saída do inversor está aterrado ou em curto-circuito. O modo de controle vetorial está selecionado, mas seus parâmetros relativos não foram ajustados corretamente. O tempo de desaceleração é muito baixo. A tensão de saída está muito baixa. A carga aumenta repentinamente durante a desaceleração. Nenhuma unidade de 	 Resolva problemas periféricos. Ajuste os parâmetros do motor. Aumente o tempo de desaceleração. Ajuste a tensão para a faixa normal. Remova o que provoca a sobrecarga. Instale a unidade de frenagem e o resistor de frenagem. Substitua por um novo inversor com potência nominal adequada. Diminua o ganho de sobre excitação. Use um dispositivo de aumento de



Código	Tipo	Possíveis causas	Solução
		frenagem e resistor de frenagem estão instalados 7. O inversor não tem capacidade suficiente. 8. O modo de controle V/F está selecionado e o ganho de sobre excitação é muito grande 9. A tensão da rede está muito baixa.	tensão para aumentar a tensão de entrada.
E04	Sobrecorrente em operação normal	 Aumento de carga abrupto ou anormal A tensão da rede está muito baixa. O inversor não tem capacidade suficiente. O circuito de saída do inversor está aterrado ou em curto-circuito. O modo de controle vetorial está selecionado, mas seus parâmetros relativos não foram ajustados corretamente. A tensão de saída está muito baixa. 	 Remova que provoca a sobrecarga. Use um dispositivo de aumento de tensão para aumentar a tensão de entrada. Substitua por um novo inversor com maior potência nominal. Resolva problemas periféricos. Ajuste os parâmetros do motor. Ajuste a tensão para a faixa normal.
E05	Sobretensão na aceleração	 Tensão de entrada anormal Existe uma força externa que trava o motor durante a aceleração O tempo de aceleração é muito baixo. Nenhuma unidade de frenagem e resistor de frenagem estão instalados 	 Ajuste a tensão para a faixa normal. Remova a força externa ou instale resistores de frenagem. Aumente o tempo de aceleração. Instale as unidades de frenagem e os resistores de frenagem.
E06	Sobretensão na desaceleração	 A tensão de entrada está muito alta. Existe uma força externa que trava o motor durante a desaceleração. O tempo de desaceleração é muito baixo. Nenhuma unidade de frenagem e resistor de frenagem estão instalados. 	1
E07	Sobretensão em operação normal	 A tensão de entrada está muito alta. Existe uma força externa que trava o motor durante a operação. 	 Ajuste a tensão para a faixa normal. Remova a força externa ou instale resistores de frenagem.

Código	Tipo	Possíveis causas	Solução
E08	Sobrecarga do resistor de amortecimento	1. A tensão de entrada não está dentro da faixa especificada.	1. Ajuste a tensão para a faixa exigida pela especificação.
E09	Subtensão	 Falha de energia instantânea. A tensão de entrada do inversor não está dentro da faixa exigida pela especificação. Tensão de barramento anormal. Ponte retificadora anormal e resistência do buffer Placa de acionamento anormal. Placa de controle anormal. 	 Reinicie o sistema. Ajuste a tensão para a faixa normal. Procure suporte técnico.
E10	Sobrecarga no inversor	 Algo trava o motor A carga é muito grande e a capacidade do inversor é muito pequena Aceleração muito rápida Tente reiniciar o motor enquanto ele ainda estiver girando. 	 Verifique o motor e suas condições mecânicas. Substitua por um novo inversor com maior potência nominal. Aumente o tempo de aceleração. Selecione o recurso de início de rastreamento de velocidade ou espere o motor parar e reinicie-o.
E11	Sobrecarga no motor	 Configuração incorreta da corrente nominal do motor O motor está bloqueado ou a carga aumenta repentinamente A tensão da rede está muito baixa. O parâmetro de proteção do motor F8-01 está ajustado corretamente? 	 Corrija o valor da corrente para corresponder à corrente nominal do motor. Reduza a carga e verifique as condições mecânicas e do motor. Use um dispositivo de aumento de tensão para aumentar a tensão de entrada. Corrija o parâmetro.
E12	Perda de fase da rede (entrada)	Nada (Reservado)	
E13	Perda de fase de saída	 Fiação errada entre o inversor e o motor. A saída trifásica do inversor está desbalanceada enquanto o motor está funcionando Placa de acionamento anormal. Módulo anormal. 	 Resolva problemas periféricos. Verifique se os enrolamentos trifásicos do motor estão normais e resolva o problema se houver. Procure suporte técnico. Procure suporte técnico.
E14	Sobreaqueciment	_	1. Limpe o duto de ar e substitua

Cádino Tino		Possíveis sousses Calvaña			
Código	Tipo	Possíveis causas	Solução		
	0	bloqueado/um ventilador está danificado 2. A temperatura ambiente está muito alta 3. A fonte de alimentação auxiliar está danificada e a tensão de acionamento está baixa 4. Placa de controle anormal. 5. O termistor do módulo	o ventilador. 2. Abaixe a temperatura ambiente. 3. Procure suporte técnico. 4. Procure suporte técnico. 5. Substitua o termistor. 6. Procure suporte técnico.		
E15	Falha externa	está danificado 6. O módulo inversor está danificado 1. Um sinal de falha externo é recebido através do terminal multifuncional DI.	Verifique o dispositivo externo anormal e reinicie o sistema após resolver o problema.		
E16	Comunicação RS485 anormal	 Um dispositivo de transmissão anormal. Fiação de comunicação anormal. Os parâmetros de comunicação do conjunto PO não estão configurados corretamente. 	 Verifique a fiação do dispositivo. Verifique a fiação de comunicação. Corrija as configurações dos parâmetros. 		
E17	Falha no contator	Nada (Reservado)			
E18	Corrente anormal detectada	 A fonte de alimentação auxiliar está danificada Circuito amplificador anormal O chip de detecção de corrente está danificado 	Procure suporte técnico		
E19	Ajuste anormal do motor	1. A capacidade do motor não corresponde à capacidade do inversor 2. Os parâmetros do motor não estão definidos de acordo com a placa de identificação 3. Tempo limite durante o ajuste do parâmetro	1. Escolha um inversor adequado de acordo com a capacidade do motor 2. Ajuste os parâmetros do motor corretamente de acordo com a placa de identificação. 3. Verifique a fiação entre o inversor e o motor.		
E20	EEPROM: Erro de leitura de parâmetro	1. Memória EEPROM danificada	1. Substitua a placa de controle principal		



24.11					
Código	Tipo	Possíveis causas	Solução		
E21	Problema de fabricação				
E22	Motor em curto- circuito com o terra	1. O motor está em curto circuito com o terra.	Substitua os cabos ou o motor		
E23	Tempo de operação atingido	1. O tempo de operação acumulado atingiu o valor definido.	Use o recurso de inicialização de parâmetro para limpar os dados o registro.		
E24	Erro definido pelo usuário 1	1. O sinal de falha 1 definido pelo usuário é recebido através do terminal multifuncional DI.	Verifique o dispositivo externo tem alguma anormalidade e reinicie o sistema após resolver o problema.		
E25	Erro definido pelo usuário 2	1. O sinal de falha 2 definido pelo usuário é recebido através do terminal multifuncional DI.	1. Verifique o dispositivo externo tem alguma anormalidade e reinicie o sistema após resolver o problema.		
E26	Tempo de conexão à rede atingido	1. O tempo de ativação acumulado atingiu o valor definido	1. Use o recurso de inicialização de parâmetro para zerar os dados de registro.		
E27	Perda de carga	1. A corrente de operação do inversor é menor que o valor ajustado em F8-52.	1. Verifique se a carga está desconectada ou se os parâmetros ajustados em F8-52 e F8-53 são adequados para a operação real.		
E28	Controle PID perdido durante operação	 Desconexão da realimentação PID A fonte de realimentação PID está desconectada A realimentação do PID é menor que o valor definido em FC-26 	Verifique o sinal de realimentação do PID está presente ou ajuste o valor definido em FC-26 para um valor apropriado.		
E29	Variação de velocidade muito elevada	 O motor está bloqueado. Os parâmetros ajustados em F8-56 e F8-57 não são adequados para detecção de desvio de velocidade. Algo errado acontece na fiação entre o terminal de saída do inversor UVW e o motor. 	 Verifique se a máquina está normal e se os parâmetros do motor estão ajustados corretamente. Corrija os parâmetros configurados em F8-56 e F8-57. Verifique se a fiação entre o inversor e o motor está desconectada 		
E42	Falha no sensor de temperatura	 O sensor de temperatura está danificado A temperatura ambiente é muito baixa ao iniciar 	Procure suporte técnico		

Código	Tipo	Possíveis causas	Solução
		3. Mau contato do sensor de	
		temperatura	

Apêndice A. Protocolo de comunicação

A.1. Utilização do MODBUS neste inversor

O protocolo MODBUS utilizado por este inversor é o modo RTU, e a camada física (linha de rede) é RS485 de dois fios.

A.1.1. RS485 a dois fios condutores

A interface RS485 de dois fios funciona em half-duplex e adota a sinalização de transmissão diferencial, também conhecida como sinalização balanceada, para lidar com seu sinal. Ele usa um par de fios trançados, um dos quais é definido como A (+) e o outro é definido como B (-). Normalmente, o nível positivo entre o driver de envio A e B variando de +2 \a +6V é lido como lógico "1", e o nível que varia de -2V a -6V é lido como lógico "0". O "485+" marcado na placa de terminais do inversor é o terminal para A e 485- é para B.

A taxa de transmissão de comunicação (P0-00) refere-se ao número de bits binários transmitidos em um segundo; portanto, sua unidade é bits por segundo (bps). Quanto maior a taxa de transmissão definida, mais rápida será a velocidade de transmissão e pior será a tolerância à interferência. Ao usar par trançado de 0,56 mm (24AWG) como cabo de comunicação, dependendo da taxa de transmissão, a distância máxima de transmissão é a seguinte:

Baud rate	Dist. Máxima						
2400BPS	1800m	4800BPS	1200m	9600BPS	800m	19200BPS	600m

Para comunicação de longa distância RS485, recomenda-se usar cabos blindados e usar a camada de blindagem como fio terra. Quando os dispositivos são poucos e a distância entre eles é curta, espera-se que toda a rede funcione bem sem um resistor de carga terminal. No entanto, o desempenho se deteriora à medida que a distância aumenta. Portanto, a uma distância maior, é aconselhável usar um resistor de terminal de 120Ω .

A.1.2. Modo RTU

A.1.2.1. Estrutura de campo de comunicação RTU

Quando um controlador é configurado para se comunicar no modo RTU (Remote Terminal Unit) em uma rede MODBUS, cada byte de 8 bits de uma mensagem contém dois caracteres

hexadecimais de 4 bits.

Codificação do sistema

- 1 bit de inicialização
- 8 bits de dados. Primeiro é enviado o bit menos significativo. Cada frame de 8 bits contém 2
 caracteres hexadecimais (0,1....A,F)
- 1 bit para definir paridade par ou impar. Se esta verificação não for necessária então este bit é eliminado
- 1 bit de finalização (parada) se a paridade for utilizada. Se a paridade não for utilizada então são usados 2 bits de finalização.

Checagem de erro

• CRC (Cyclic Redundancy Check)

A descrição dos bits do quadro MODBUS RTU é a seguinte:

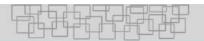
11 bits por quadro sendo que BIT1 ~ BIT8 são os bits de dados.

Bit de início	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	BIT8	Bit de checagem	Bit de parada	
---------------	------	------	------	------	------	------	------	------	-----------------	---------------	--

Um quadro de informação deve ser transmitido em um fluxo de dados contínuo. Se um intervalo sem dados de mais de 1,5 bytes ocorrer antes do final de toda a transmissão do quadro, o dispositivo receptor limpará os dados recebidos porque estão incompletos e tratará erroneamente o próximo byte de entrada como o campo de endereço de um novo quadro. Da mesma forma, se o período de silêncio que precede a transmissão de um novo quadro for inferior a 3,5 bytes, o dispositivo receptor tratará o próximo byte de entrada como parte do quadro anterior. Isso causará desordem no quadro e um valor CRC final incorreto, o que levará à falha de comunicação. Estrutura Padrão do Quadro RTU:

Cabeçalho do quadro (Início)	T1-T2-T3-T4 (Tempo de transmissão de 3.5 bytes)
Campo do endereço do escravo (ADDR)	Endereço de comunicação: 0~247 (decimal) ("0" para a transmissão do endereço)
Função (CMD)	03H: Leitura dos parâmetros do escravo; 06H: Escrita dos parâmetros do escravo;

SIBRATEC	ELETRÔNICA
Dados DATA (N-1) DATA (0)	Dados de 2*N bytes: Esta parte é o contexto principal da comunicação e é a parte mais importante da troca de dados.
CRCCHK bit menos significativo CRCCHK bit mais significativo	Detecção do valor: CRC (16BIT).
Final da transmissão (END)	T1-T2-T3-T4 (Tempo de transmissão 3.5 bytes)


A.2. Códigos de comando e de dados

A.2.1. Código de comando: 03H ler N palavras (Disponível para ler no máximo 12 palavras consecutivas)

O código de comando 03H significa que o host lê os dados do inversor, onde o número de dados a serem lidos é especificado na parte "número de dados" do comando e é de até 12 dados. O endereço de leitura deve ser consecutivo. O comprimento de byte ocupado por cada dado é de 2 bytes, que também é conhecido como uma palavra. Posteriormente, os comandos mencionados aqui são todos expressos em formato hexadecimal (um número seguido de um "H" indica que é um número hexadecimal), e um hexadecimal ocupa um byte. Este comando é usado para ler o estado de funcionamento do inversor. Por exemplo: De um inversor com o endereço escravo 01H, leia duas palavras consecutivamente a partir do endereço de dados 0004H (ou seja, leia os dados de 0004H e 0005H), onde a estrutura dos quadros são como abaixo:

RTU Comando mes mestre para o invers		RTU Resposta do (Enviado do inversor	
START	T1-T2-T3-T4	START	T1-T2-T3-T4
ADDR	01H	ADDR	01H
CMD	03H	CMD	03H
		Número de bytes	04H
Bits mais significativos do endereço inicial	00H	Bits de dados mais significativos no endereço 0004H	13H
Bits menos significativos do endereço inicial	04H	Bits de dados menos significativos no endereço 0004H	88H
Bits mais significativos de	00H	Bits de dados mais significativos no	00H

SIBRATEC			ELETRÓNICA
número de dados		endereço 0005H	
Bits menos significativos de número de dados	02H	Bits de dados menos significativos no endereço 0005H	00H
Bits menos significativos do CRC	85H	Bits menos significativos do CRCCHK	7EH
Bits mais significativos do CRC	CAH	Bits mais significativos do CRCCHK	9DH
END	T1-T2-T3-T4	END	T1-T2-T3-T4

T1-T2-T3-T4 (3,5 bytes de tempo de transmissão) nas linhas START e END é o tempo ocioso de transmissão (cujo comprimento é de pelo menos 3,5 bytes) reservado para comunicação RS485, o que garante intervalo de tempo suficiente para permitir que os dispositivos distingam duas partes de informações sem confundi-las em uma única informação;

ADDR está definido para 01H. Significa que o comando é enviado ao inversor com endereço 01H. O comprimento de ADDR é um byte;

CMD está configurado para 03H, o que significa que é usado para ler os dados do inversor. O comprimento do CMD é um byte;

"Endereço inicial" indica o ponto inicial da operação de leitura de dados. O comprimento do endereço inicial é de dois bytes com os bits mais altos na frente dos bits mais baixos.

"Número de dados" indica o número de dados a serem lidos, a unidade é "Palavra". O endereço inicial é definido para 0004H e o número de dados é para 0002H, o que significa que a operação é ler dados dos dois endereços 0004H e 0005H.

A verificação CRC ocupa dois bytes, onde os bits mais baixos formam o primeiro byte e os bits mais altos formam o último byte.

Descrição da resposta da mensagem:

ADDR está definido para 01H. Significa que o comando é enviado ao inversor com endereço 01H. O comprimento de ADDR é um byte; CMD está configurado para 03H, o que significa que a mensagem enviada pelo inversor é uma resposta ao comando de leitura 03H do mestre. O comprimento do CMD é um byte;

O byte "Número de bytes" representa o número de bytes de si mesmo (não incluído) para o byte CRC (não incluído). Aqui, 04 significa que existem 4 bytes do byte "Número do número do byte" para "Bits inferiores de CRCCHK" bytes, que são "bits mais altos do endereço de dados 0004H", "Bits inferiores do endereço de dados 0004H", "Bits mais altos de dados endereço 0005H", e "

Bits inferiores do endereço de dados 0005H";

A quantidade de dados armazenada em um dado é de dois bytes, com bits mais altos na frente e bits mais baixos na parte de trás. Pode ser visto a partir das informações que os dados armazenados no endereço de dados 0004H são 1388H e os dados no endereço 0005H são 0000H. A verificação CRC ocupa dois bytes, onde os bits mais baixos consistem no primeiro byte e os bits mais altos consistem no byte posterior.

A.2.2. Código de comando: 06H (00000110 em formato binário),

Escrever uma palavra

Este comando indica a solicitação do mestre para gravar dados no inversor. Um desses comandos só pode ser usado para escrever uma palavra de dados, não várias palavras. É para alterar o modo de operação do inversor.

Por exemplo, em uma operação de escrita tentando escrever 5000 (1388H) no endereço 0008H do inversor com o endereço escravo 02H, a estrutura dos quadros é a seguinte

RTU Comando mes mestre para o inverso	stre (Enviado do or - escravo)	RTU Resposta do (Enviado do inversor	
START	T1-T2-T3-T4	START	T1-T2-T3-T4
ADDR	02H	ADDR	02H
CMD	06H	CMD	06H
Bits mais	00H	Bits mais	00H
significativos do		significativos do	
endereço de		endereço de	
memória de destino		memória de destino	
Bits menos	04H	Bits menos	04H
significativos do		significativos do	
endereço de		endereço de	
memória de destino		memória de destino	
Bits mais	13H	Bits mais	13H
significativos de		significativos de	
dados a serem		dados a serem	
gravados		gravados	
Bits menos	88H	Bits menos	88H
significativos de		significativos de	

SIBRATEC			ELETRÔNICA
dados a serem gravados		dados a serem gravados	
Bits menos significativos do CRCCHK	C5H	Bits menos significativos do CRCCHK	C5H
Bits mais significativos do CRCCHK	6EH	Bits mais significativos do CRCCHK	6EH
END	T1-T2-T3-T4	END	T1-T2-T3-T4

NOTA: O formato do comando é introduzido principalmente na seção A.2 e na seção A.3.

A.3. Definição dos dados dos endereços

Esta seção apresenta a definição do endereço de dados de comunicação, que é usado para controlar o modo de operação do inversor e obter as informações de status do inversor e os parâmetros funcionais relacionados.

A.3.1. Regra de expressão de parâmetro de código

Um endereço de parâmetro consiste em dois bytes, onde o primeiro byte armazena bits mais altos e o byte posterior armazena bits mais baixos. Ambos os bytes variam de $00 \sim ffH$. O endereço do parâmetro pode ser traduzido do nome do código de seu código funcional correspondente. A parte antes de "-" no código da função consiste no byte mais alto e a parte depois de "-" consiste no byte mais baixo, onde ambas as partes precisam ser convertidas para número hexadecimal. Tomando como exemplo o código de função F5-05, como "F5" consiste no byte superior e "05" no byte inferior, o endereço do parâmetro será F505H após a conversão hexadecimal. Tomando outro exemplo, se o código da função for FE-17, o endereço do parâmetro será FE11H.

NOTAS:

- 1. O conjunto P5 são os parâmetros de fábrica e não podem ser lidos ou alterados pelos usuários. Além disso, alguns parâmetros não podem ser alterados com o inversor em funcionamento; alguns parâmetros não podem ser alterados independentemente do estado do inversor; ao alterar os parâmetros do código de função, preste atenção e siga a faixa de configuração do parâmetro, a unidade e as instruções relacionadas.
- 2. Além disso, se a EEPROM for frequentemente usada pela operação de armazenamento, a vida útil da EEPROM pode ser reduzida. Como alguns usuários já sabem, alguns códigos de função não precisam ser armazenados durante um processo de comunicação, alterando seu valor na RAM no chip traz o mesmo efeito. Para conseguir isso, basta alterar o bit mais alto do endereço do código de função correspondente de F para 0, U para 7 e P para 4. Por exemplo, se você achar que não precisa armazenar o código de função F0-07 na EEPROM e quiser alterar seu valor na RAM, basta alterar o endereço para 0007H. No entanto, este tipo de

endereço só é válido para fins de escrita e se tornará inválido para qualquer operação de leitura.

A.3.2. Endereço das funções MODBUS

O MODBUS sempre funciona como mestre/escravo. O mestre é o controlador da rede. O mestre, além de manipular os parâmetros do inversor, pode também controlar o inversor, como rodar, parar, etc., além de monitorar o estado do inversor. A tabela a seguir lista os parâmetros de outras funções:

Função	Endereço	Descrição do dado	Leitura ou escrita R/W
Comando de controle da comunicação	2000H	0001H: Motor rodando para frente	W
		0002H: Motor rodando para trás	
		0003H: Jogging para frente	
		0004H: Jogging para trás	
		0005H: Reduzir a velocidade até parar	
		0006Н: Parar desaceleração	
		0007H: Reset de indicação de erro	
Configuração do endereçamento de comunicação	1000H	Frequência de comunicação (0 \sim Fmax (Unidade: 0.01Hz))	W
	2001H	0001H: Relé fechado	
		0002H: Saída DO1 em 1 (Nível alto)	
	2002H	Configurações de saída AO (Faixa: 0~ x7FFF, onde 0x7FFF corresponde a 100,0%)	W
Status do inversor	3000H	0001H: Em operação	R
Código de erro do inversor	8000H	Veja descrição dos códigos de erro	R

O recurso R/W indica a disponibilidade de leitura/gravação da função. Por exemplo, "Comando de controle de comunicação" é um recurso de gravação disponível e aceita um comando de gravação (06H) para controlar o inversor. Os recursos R só podem ser lidos e os recursos W só podem ser gravado.

AVISO: Ao usar a tabela acima para operar o inversor, alguns parâmetros precisam ser habilitados antecipadamente. Por exemplo, se você deseja executar uma operação de acionamento ou parada, você precisa definir o "Canal de comando de operação" (F0-21) para "Canal de comando de operação de comunicação". Outro exemplo, quando você deseja manipular o "ponto de ajuste PID", você precisa definir a "Seleção da fonte do ponto de ajuste PID" (FC -00) para "Ponto de

ajuste de comunicação".

A.3.3. Fieldbus

No uso real, os dados de comunicação são expressos em formato hexadecimal e o formato hexadecimal não pode expressar ponto decimal. Por exemplo, 50,12Hz não pode ser expresso em hexadecimal. No entanto, podemos aumentá-lo por um fator de 100 vezes em um inteiro (5012), de modo que 1394H em hexadecimal (ou seja, 5012 em decimal) possa ser usado para representar 50,12. O fator usado aqui para aumentar um não inteiro em um inteiro é chamado de razão fieldbus.

A relação do fieldbus é determinada com base no ponto decimal da "faixa de ajuste" ou "valor padrão" listado na tabela de parâmetros de função. Se houver n dígitos decimais após o ponto decimal (por exemplo, n=1), a relação do fieldbus m é definida para a enésima potência de 10 (m=10). Para obter detalhes, consulte o exemplo a seguir:

Código da função Nome		Descrição	Padrão	Alterável
F0-01	Presset da frequência	0.00HZ~Frequência máxima (F0-09)	50.00HZ	☆
F0-13	Tempo de aceleração 1	Faixa: 0.0 ~6500.0s (Quando F0-15 é setado para 1)	Determinação por modelo	☆

Como a "faixa de configuração" ou "valor de fábrica" da frequência predefinida F0-01 tem dois dígitos decimais, o valor da relação do fieldbus é 100. Se o valor recebido pelo computador host for 5000, isso significa "Frequência limite" do inversor é 50,00HZ (50,00=5000÷100). Considere um caso de uso da comunicação MODBUS para definir o tempo de aceleração para 20,0s. Primeiro, aumente 20,0 por um fator de 10 para um inteiro 200, que é C8H em hexadecimal. Então ficará assim:

01 06 F0 0D 00 C8 2A 9F

Endereço do inversor/ Comando de escrita/ Endereço do parâmetro/ Dado/ Verificação CRC

Após receber a instrução, o inversor muda de 200 para 20,0 usando a relação de fieldbus, e então ajusta o tempo de aceleração para 20s. Além disso, após enviar o comando do parâmetro "tempo de aceleração", o dispositivo superior recebe uma mensagem de resposta do inversor:

01 03 02 00 64 B9 AF

Endereço do inversor/ Comando de escrita/ 2 bites de dados/ Dado/ Verificação CRC

Os dados do parâmetro são 0064H e são 100 em decimal. Diminua 100 pelo fator de 10 a 10,0, o que indica que o tempo de atraso da recuperação do sono é de 10s.

A.3.4. Resposta da mensagem de erro

Ao usar o controle de comunicação, é inevitável encontrar erros. Você pode enviar acidentalmente um comando de escrita para um parâmetro que só pode ser lido, mas escrito, e o inversor enviar de volta uma resposta de mensagem de erro. Aqui, a resposta da mensagem de erro é enviada do inversor para o mestre, e seu código significa o seguinte:

Códi go	Nome	Descrição				
01H	Senha errada	A senha digitada não é a mesma que foi definida em FF-00.				
02H	Leitura e escrita	Os comandos de leitura e escrita não são 03H e nem 06H				
03H	Verificação de CRC	Ocorreu um erro de transmissão que causou uma inconsistência ntre a transmissão e a recepção				
04H	Endereço inválido	Para o inversor, o endereço de dado exigido pelo mestre não pode ser acessado, particularmente quando o endereço é um endereço de registro ou é um código inválido.				
05H	Parâmetro inválido	O dado recebido contém um valor inaceitável. Este valor indica um erro encontrado nos dados requeridos. NOTA: Isso necessariamente não significa que o valor do dado sea um valor não aceitável ou não esperado pelo processo.				
06H	Parâmetro é somente leitura	O parâmetro requisitado pelo mestre via dispositivo de escrita é somente para leitura.				
07H	Sistema bloqueado	A senha de usuário está setada porém ainda não foi gravada.				
08H	Parâmetros armazenados	O armazenamento dos parâmetros prévios ainda não foi completado.				

Por exemplo, ao tentar configurar o "Modo de controle do motor" do inversor cujo endereço é 01H (o endereço do parâmetro F0-00 é F000H) para 02, o comando abaixo é configurado:

01 06 F0 00 00 02 3B 0B

Endereço do inversor/ comando de leitura/ endereço do parâmetro/ dados do parâmetro/ verificação CRC

No entanto, a faixa de configuração do "Modo de controle do motor" é $0 \sim 1$, o que significa que 2 é um valor que excede a faixa. Neste momento, o inversor retorna uma mensagem de resposta de mensagem de erro que diz o seguinte:

01 06 80 01 00 05 31 C9

Endereço do inversor/ Comando de gravação/ Código de resposta anormal/ Código de erro/ Verificação CRC

O código de resposta anormal 8001H indica que a comunicação MODBUS é anormal. O código de

erro 05H mostra que o parâmetro escrito está fora da faixa e inválido.

A.4. Exemplo de operações de escrita e leitura

Consulte o capítulo A.3 para o formato dos comandos de leitura e escrita.

A.4.1. Exemplo de utilização do comando de leitura 03H

Exemplo 1: Para ler o valor da temperatura do inversor que está armazenado no endereço FA06H, o comando enviado ao inversor lê:

<u>01</u> <u>03</u> <u>FA 06</u> <u>00 01</u> <u>54 D3</u>

Endereço do inversor/ comando de leitura/ endereço do parâmetro/ número de dados/ verificação CRC Se a resposta for:

01 03 01 00 1B 08 4F

Endereço do inversor/ comando de leitura/ número de dados/ conteúdo de dados/ verificação CRC

O conteúdo de dados retornado pelo inversor é 001BH, o que indica que a temperatura do inversor é 27°C.

A.4.2. Exemplo de utilização do comando de escrita 06H

Exemplo 1: Para solicitar o inversor com endereço 03H para avançar. Referindo-se à "Lista de Parâmetros de Outras Funções", o endereço do parâmetro "Comando de Controle de Comunicação" é 2000H, e o valor da operação direta é 0001. Veia abaixo:

Função Endereço Descrição dos dados			Leitura/ Escrita R/W
		0001H: Rodando para frente	
		0002H: Rodando de ré	
Comando de		0003H: Jogging para frente	
controle de	2000H	0004H: Jogging para trás	W
comunicação		0005H: Reduzir velocidade até parar	
		0006H: Parada da desaceleração	
		0007H: Resset de erro	

O comando enviado pelo mestre lê:

03 06 20 00 00 01 42 28

Endereço do inversor/ Comando de gravação/ Endereço do parâmetro/ Avanço/ Verificação CRC

Se a operação for concluída com sucesso, as informações de resposta retornadas são lidas da seguinte forma (igual ao comando enviado pelo mestre):

<u>03</u> <u>06</u> <u>20 00</u> <u>00 01</u> <u>42 28</u>

Endereço do inversor/ Comando de gravação/ Endereço do parâmetro/ Avanço/ Verificação CRC

Exemplo2: Para o inversor com endereço 03H, enviar um comando para ajustar sua "Frequência máxima de saída" para 100Hz.

Código	Nome	Descrição do parâmetro	Padrão	Alterabilidade
F0-09	Máxima saída de frequência	Usado para definir a frequência máxima de saída do inversor. É a base das configurações de frequência e a base da aceleração e desaceleração. Tenha cuidado para configurá-lo corretamente. Faixa de ajuste: 50,00~500,00Hz	50.00Hz	*

Pela análise do número de dígitos decimais, a razão fieldbus da "Frequência máxima de saída" (F0-09) é 100. Multiplique 100Hz pela razão e você terá 10000, que é 2710H em expressão hexadecimal. O mestre envia um comando da seguinte maneira:

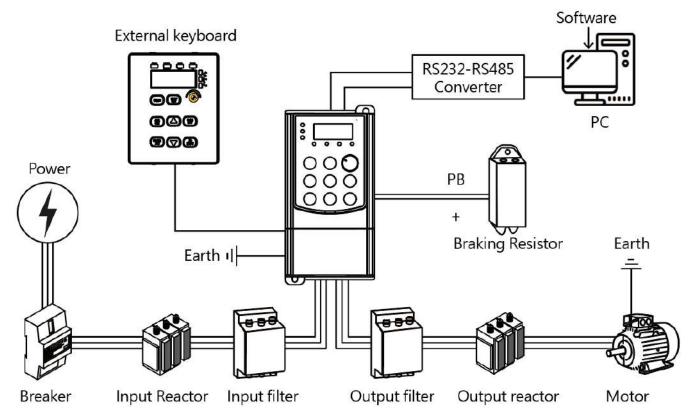
<u>03</u> <u>06</u> <u>00 03</u> <u>27 10</u> <u>71 16</u>

Endereço do inversor/ Comando de gravação/ Endereço do parâmetro/ Avanço/ Verificação CRC

Se o comando tiver sucesso, a resposta será lida como abaixo(igual ao comando enviado pelo mestre):

<u>03</u> <u>06</u> <u>00 03</u> <u>27 10</u> <u>71 16</u>

Endereço do inversor/ Comando de gravação/ Endereço do parâmetro/ Avanço/ Verificação CRC



Apêndice B: Opções de periféricos

B.1. Fiação de periféricos

O diagrama abaixo mostra como deve ser a fiação para diversos periféricos

Tipo	Nome	Descrição
	Teclado externo	Incluindo teclado externo com recurso de cópia de parâmetro e teclado externo sem o recurso. Quando o teclado externo com recurso de cópia de parâmetro estiver habilitado, o teclado local se desligará; quando o recurso de teclado externo sem cópia de parâmetro está habilitado, o teclado local e o teclado externo ficam ativos ao mesmo tempo.
	Cabo	Utilizado para transmitir sinais elétricos

SIBRATEC DR Previne acidentes de choque elétrico e protege contra curtos-circuitos à terra que podem causar incêndios de corrente de fuga (selecione um DR adequado para inversores e que tenha a função de suprimir harmônicos de ordem superior. A corrente sensível nominal do DR deve ser maior de 30mA para um inversor). de Adequado para melhorar o fator de potência do lado de Reator entrada entrada do inversor e pode suprimir os harmônicos de corrente de ordens altas Filtro Suprime a EMI gerada pelo inversor e transmitida para de entrada a rede pública através da linha de entrada. Instale-o durante a instalação e o mais próximo possível do lado do terminal de entrada do inversor. Resistor de Utiliza sua resistência para consumir a frenagem regenerativa do motor e para reduzir o tempo de desaceleração. Filtro de saída Suprime a interferência gerada pela fiação no lado de # 8 saída do inversor. Instale-o o mais próximo possível do terminal de saída do inversor. Estende a distância de utilização efetiva do inversor e Reator de l suprime as inteferências de alta tensão instantânea saída geradas quando o IGBT do inversor é ligado e

B.2. Fonte de alimentação

Certifique-se de que o inversor é compatível com a tensão da rede

desligado.

B.3. Cabeamento

B.3.1. Cabos de sinal

As especificações dos cabos de alimentação de entrada e cabos do motor devem estar em conformidade com as normas técnicas da ABNT.

AVISO: Se a condutividade elétrica da camada de blindagem do cabo do motor não atender aos requisitos, um condutor PE adicional deve ser usado com os cabos.

B.3.2. Cabos de controle

Todos os cabos usados para controle analógico ou entrada de frequência devem ser cabos blindados. Os cabos do relé precisam ser cabos com blindagem trançada de metal. O teclado precisa ser conectado com um cabo de rede. Se usá-lo em um ambiente eletromagnético severo, é recomendado um cabo de rede blindado.

Notas:

- O sinal analógico e o sinal digital estão em cabos diferentes, portanto isolados entre si.
- Antes de conectar os cabos de alimentação de entrada do inversor, verifique o isolamento dos cabos de alimentação de entrada de acordo com os regulamentos locais.

	Bitola ı	recomendada	para os cabos	Parafusos		
Modelo	RST UVW	Tipo de parafuso	Tipo de parafuso	PB (+)	tipo	Torque (Nm)
0.75G-S2	1.5	1.5	1-4	1-4	M3	0.8
1.5G-S2	2.5	2.5	1-4	1-4	M3	0.8
2.2G-S2	2.5	2.5	1-4	1-4	М3	0.8
3.7G-T4	2.5	2.5	2.5	2.5	M4	2 ~ 2.5
5.5G-T4	2.5	2.5	2.5	2.5	M4	1.3~ 1.5
7.5G-T4	4	4	4	4	M4	1.3~ 1.5

NOTAS:

- As especificações de cabo recomendadas para o circuito principal são baseadas nas condições, incluindo a temperatura ambiente abaixo de 40 graus Celsius, a distância da fiação abaixo de 100 me fluxo de corrente do valor nominal.
- Terminal (+) e PB são os terminais para conectar o resistor de frenagem.

- Se o cabo de controle e o cabo de alimentação tiverem que se cruzar, o ângulo entre eles deve ser de 90 graus.
- Se o interior do motor estiver molhado, a resistência de isolamento diminuirá. Se houver suspeita de algum sinal de umidade, seque o motor e meça novamente a resistência de isolamento.

B.4. Disjuntor e contator

Para proteção do inversor é necessário instalar um fusível de ação rápida e um disjuntor na entrada de alimentação. O disjuntor deve ter dispositivo de trava na posição desconectado para tornar mais segura a instalação e manutenção. A capacidade do disjuntor deve ser ajustada entre 1,5 e 2 vezes a corrente nominal do inversor.

O disjuntor deve ser instalado e manuseado seguindo orientações do fabricante.

a cortar efetivamente a energia de entrada do inversor, é aconselhável ter um contator eletromagnético instalado no lado da entrada. Este contator controla a ativação e desativação

da alimentação do circuito principal para garantir a segurança.

Modelo	Corrente nominal do disjuntor (A)	Fusível (A)	Corrente nominal do contator recomendado (A)
0.75G-S2	16	16	12
1.5G-S2	25	25	25
2.2G-S2	50	40	32
3.7G-T4	16	25	12
5.5G-T4	25	32	25
7.5G-T4	32	40	26

B.5. Reator

Para evitar que a corrente instantânea flua para o circuito de alimentação de entrada e danifique o retificador quando a rede elétrica fornecer entrada de alta tensão, instale um reator CA no lado de entrada. Esta medida também pode melhorar o fator de potência na entrada. Quando a distância entre o inversor e o motor excede 50 metros, a corrente de fuga se torna maior devido ao aumento do efeito de capacitância parasita entre o cabo e o terra, o que torna o inversor propenso a ativação da proteção de sobrecorrente e pode causar danos ao isolamento do motor. Para evitar isso, é necessário um reator de saída. Ao usar um inversor para atender vários motores, é necessário somar o comprimento do cabo de cada motor para obter o comprimento total do cabo do motor. Quando o comprimento total for superior a 50 metros, um reator de saída deve ser adicionado no lado de saída do inversor. Quando a distância entre o inversor e o motor estiver entre 50 e 100 metros, selecione o modelo de acordo com a tabela a seguir. Quando exceder 100 metros, consulte diretamente o fabricante para obter mais suporte técnico.

NOTAS:

- Para reatores de entrada, a queda de tensão nominal de entrada é de 2%±15%. Para reatores de saída, a queda de tensão nominal de saída é de 1%±15%.
- Todos os acessórios opcionais mencionados acima não estão incluídos na embalagem do produto. Os clientes precisam fazer pedidos adicionais para eles, se necessário.

B.6. Resistor de frenagem

B.6.1. Seleção do resistor de frenagem

Quando o inversor desacelera com uma grande carga conectada ou precisa desacelerar rapidamente, o motor estará gerando eletricidade e a energia será transferida para o link CC do inversor através da ponte do inversor, o que faz com que a tensão do barramento do inversor aumente. Quando a tensão crescente do barramento exceder um determinado valor, o inversor reportará um evento de falha de sobretensão. Para evitar que isso aconteça, será necessário instalar um resistor de frenagem

O projeto, instalação e operação do resistor de frenagem devem ser realizados por profissionais treinados e qualificados.

Durante a tarefa de instalação, todas as disposições do "Aviso" devem ser seguidas; caso contrário, pode causar lesões pessoais graves ou danos materiais importantes.

O pessoal não profissional não está autorizado a realizar a instalação. Caso contrário, o circuito do inversor ou a frenagem podem ser danificados acidentalmente.

Antes de conectar o resistor de frenagem opcional ao inversor, leia atentamente o manual de instruções do resistor de frenagem.

Não conecte o resistor de frenagem a terminais diferentes de PB e (+). Caso contrário, causará danos ao circuito de frenagem e ao inversor e causará um acidente de incêndio.

Conecte o resistor de freio opcional ao inversor da maneira mostrada no diagrama de fiação. Se houver alguma fiação errada, o inversor junto com outros dispositivos podem ser danificados.

Modelo	Unidade de frenagem	Resistor de frenagem a 100% do torque (Ω)	Energia dissipada no resistor de frenagem(kW) (10% de frenagem)	Energia dissipada no resistor de frenagem(kW) (50% de frenagem)	Energia dissipada no resistor de frenagem(kW) (80% de frenagem)	Menor resistência permitida para o resistor de frenagem (Ω)
0.75G-S2	Construção	192	0.11	0.56	0.90	42

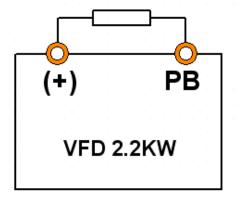
SIBRA	ΓEC					ELETRÔNICA
1.5G-S2	interna ao	96	0.23	1.10	1.18	30
2.2G-S2	inversor	65	0.33	1.7	2.64	21
3.7G-T4		122	0.6	3	4.8	80
5.5G-T4		89	0.75	4.1	6.6	60
7.5G-T4		65	1.1	5.6	9	47

AVISO: Selecione a resistência e a potência do resistor de frenagem de acordo com os dados fornecidos pelo fabricante. Um resistor de frenagem aumenta o torque de frenagem do inversor. A tabela acima lista a potência do resistor nas condições de 100% de torque de frenagem, 10% de taxa de utilização de frenagem, 50% % de taxa de utilização de frenagem, os usuários podem escolher seu sistema de frenagem de acordo com seus requisitos de operação do inversor.

Não use um resistor de frenagem cujo valor de resistência seja menor que o valor mínimo especificado. Nesta situação, os inversores não terão proteção adequada por sobrecorrente.

Para situações que exigem frenagem frequente, ou onde a taxa de utilização da frenagem excede 10%, a potência do resistor de frenagem precisa ser maior que o valor fornecido na tabela acima. Calcular de acordo com as condições reais de trabalho.

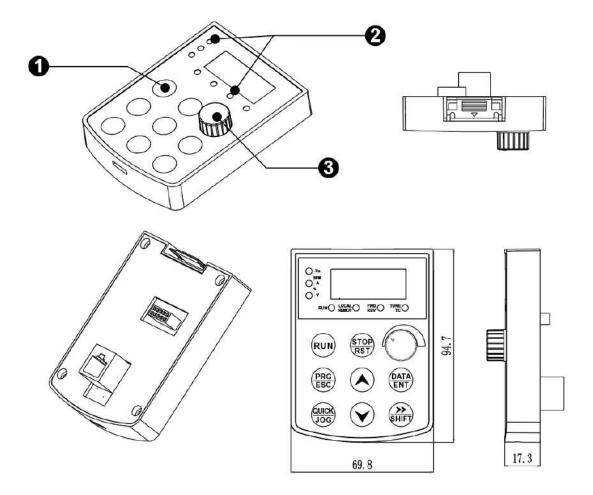
B.6.2. Instalação do resistor de frenagem


Para conectar um resistor de frenagem, use cabos blindados. Todos os resistores devem ser instalados em local bem refrigerado porque produzem calor ao serem acionados.

O resistor de frenagem deve ser instalado longe de materiais inflamáveis. A temperatura da superfície do resistor é muito alta. A temperatura do ar que flui do resistor pode chegar a várias centenas de graus Celsius. Evitar que qualquer material ou objeto entre em contato com o resistor.

PB e (+) são os terminais onde o resistor de frenagem será ligado.

Resistor de frenagem externo



B.7. Dimensões (mm)

B.7.1. Teclado externo

- 1. Botão
- 2. LED indicador
- 3. Potenciômetro

